Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

被引:32
作者
Luchi, R. [1 ]
Balachandar, S. [2 ]
Seminara, G. [3 ]
Parker, G. [1 ,4 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL USA
[3] Univ Genoa, Dept Civil Chem & Environm Engn, Genoa, Italy
[4] Univ Illinois, Dept Geol, Urbana, IL USA
关键词
turbidity currents; long runout; driving layer; equilibrium; saline currents; fall velocity; DIAPIRIC MINIBASINS; VERTICAL STRUCTURE; CONTINENTAL-SLOPE; CHANNEL; SEDIMENT; TURBULENCE; FLOW; ENTRAINMENT; DYNAMICS; VELOCITY;
D O I
10.1002/2017GL075608
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower driving layer approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper driven layer contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.
引用
收藏
页码:1518 / 1526
页数:9
相关论文
共 43 条
[1]  
[Anonymous], 2004, SEA
[2]   Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons [J].
Azpiroz-Zabala, Maria ;
Cartigny, Matthieu J. B. ;
Talling, Peter J. ;
Parsons, Daniel R. ;
Sumner, Esther J. ;
Clare, Michael A. ;
Simmons, Stephen M. ;
Cooper, Cortis ;
Pope, Ed L. .
SCIENCE ADVANCES, 2017, 3 (10)
[3]   SEDIMENTARY ARCHITECTURE IN MEANDERS OF A SUBMARINE CHANNEL: DETAILED STUDY OF THE PRESENT CONGO TURBIDITE CHANNEL (ZAIANGO PROJECT) [J].
Babonneau, N. ;
Savoye, B. ;
Cremer, M. ;
Bez, M. .
JOURNAL OF SEDIMENTARY RESEARCH, 2010, 80 (9-10) :852-866
[4]   Quaternary depositional systems in northern Lake Baikal, Siberia [J].
Back, S ;
De Batist, M ;
Strecker, MR ;
Vanhauwaert, P .
JOURNAL OF GEOLOGY, 1999, 107 (01) :1-12
[5]  
BrOrs B., 1992, J GEOPHYS RES, V97, P2156
[6]   Towards a universal criteria for turbulence suppression in dilute turbidity currents with non-cohesive sediments [J].
Cantero, Mariano I. ;
Shringarpure, Mrugesh ;
Balachandar, S. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[7]   Turbidity current with a roof: Direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment [J].
Cantero, Mariano I. ;
Balachandar, S. ;
Cantelli, Alessandro ;
Pirmez, Carlos ;
Parker, Gary .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2009, 114
[8]  
Cooper C, 2013, OFFSH TECHN C
[9]   Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland) [J].
Corella, J. P. ;
Arantegui, A. ;
Loizeau, J. L. ;
DelSontro, T. ;
le Dantec, N. ;
Stark, N. ;
Anselmetti, F. S. ;
Girardclos, S. .
AQUATIC SCIENCES, 2014, 76 :S73-S87
[10]   Entrainment and turbulence in saline underflow in Lake Ogawara [J].
Dallimore, CJ ;
Imberger, J ;
Ishikawa, T .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2001, 127 (11) :937-948