Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case

被引:25
作者
Boscaggin, Alberto [1 ]
Feltrin, Guglielmo [2 ]
Zanolin, Fabio [3 ]
机构
[1] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Udine, Dipartimento Matemat Informat & Fis, Via Sci 206, I-33100 Udine, Italy
关键词
boundary-value problems; positive solutions; indefinite weight; multiplicity results; coincidence degree; EXISTENCE; EQUATIONS; MULTIPLICITY; NEUMANN;
D O I
10.1017/S0308210515000621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic and Neumann boundary-value problems associated with the second-order nonlinear differential equation u '' vertical bar cu' vertical bar lambda a(t)g(u) - 0, where g: [0,+infinity[ -> [0,+8[ is a sublinear function at infinity having superlinear growth at zero. We prove the existence of two positive solutions when integral(T)(0) a(t) dt < 0 and lambda > 0 is sufficiently large. Our approach is based on Mawhin's coincidence degree theory and index computations.
引用
收藏
页码:449 / 474
页数:26
相关论文
共 27 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]  
[Anonymous], 1972, J. Funct. Anal, DOI DOI 10.1016/0022-1236(72)90074-2
[3]  
[Anonymous], 1993, TOPOLOGICAL METHODS
[4]  
[Anonymous], 1976, LECT NOTES MATH
[5]  
[Anonymous], 1994, Topol. Methods Nonlinear Anal.
[6]   EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NEUMANN PROBLEMS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (02) :257-278
[7]  
Bingham N. H., 1989, Encyclopedia of Math- ematics and Its Applications, V27
[8]   Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) :451-478
[9]  
Boscaggin A, 2013, ADV NONLINEAR STUD, V13, P13
[10]   Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight [J].
Boscaggin, Alberto ;
Zanolin, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2900-2921