Anomaly Detection in Surveillance Videos via Memory-augmented Frame Prediction

被引:0
作者
Yang, Rui [1 ]
Li, Qun [1 ]
Shen, Yaying [1 ]
Zhang, Ziyi [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
基金
中国国家自然科学基金;
关键词
anomaly detection; frame prediction; autoencoder; memory module;
D O I
10.1109/IJCNN55064.2022.9892924
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in surveillance videos is a challenging task in computer vision, and can be defined as the detection of actions or events that do not conform to the expected behaviors. Most of the existing methods solve the task by minimizing the reconstruction errors between the ground-truth video frames and their reconstructed frames. However, these methods sometimes reconstruct anomalies well that results in high false detections and a decrease of the performance. Therefore, we propose a frame prediction method which is based on a memory-augmented scheme for anomaly detection. Our method regards anomaly detection as a frame prediction task, and uses a generative network to achieve the frame prediction. For generating high quality video frames, we embed a memory module into the generative network, which effectively improves the feature representation of normal events and reduces the representation of abnormal events. In addition, we adapt an attention mechanism to model the interdependence between feature channels. In order to evaluate our method, we introduce a new anomaly detection dataset that consists of real and multiscene surveillance videos. Extensive experiments on our dataset and publicly available datasets validate the effectiveness and robustness of our proposed method.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Cai RC, 2021, AAAI CONF ARTIF INTE, V35, P938
[2]  
Chalfi R, 2019, Al-Andalus Magreb, P1, DOI [10.25267/aam.2019.i26.5, 10.48550/arXiv.1901.03407, DOI 10.1145/3274658]
[3]  
Chen YQ, 2001, IEEE IMAGE PROC, P34, DOI 10.1109/ICIP.2001.958946
[4]  
Doersch C., 2016, TUTORIAL VARIATIONAL
[5]   Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [J].
Georgescu, Mariana-Iuliana ;
Barbalau, Antonio ;
Ionescu, Radu Tudor ;
Khan, Fahad Shahbaz ;
Popescu, Marius ;
Shah, Mubarak .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12737-12747
[6]   Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection [J].
Gong, Dong ;
Liu, Lingqiao ;
Le, Vuong ;
Saha, Budhaditya ;
Mansour, Moussa Reda ;
Venkatesh, Svetha ;
van den Hengel, Anton .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1705-1714
[7]   Learning Temporal Regularity in Video Sequences [J].
Hasan, Mahmudul ;
Choi, Jonghyun ;
Neumann, Jan ;
Roy-Chowdhury, Amit K. ;
Davis, Larry S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :733-742
[8]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[10]   LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation [J].
Hui, Tak-Wai ;
Tang, Xiaoou ;
Loy, Chen Change .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8981-8989