Role of Kernel Parameters in Performance Evaluation of SVM

被引:17
作者
Goel, Aditi [1 ]
Srivastava, Saurabh Kr. [2 ]
机构
[1] ABES Engn Coll, Dept Comp Sci & Engn, Ghaziabad, India
[2] ABES Engn Coll, Dept Informat Technol, Ghaziabad, India
来源
2016 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT) | 2016年
关键词
SVM; Kernel Parameters; Dataset;
D O I
10.1109/CICT.2016.40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.
引用
收藏
页码:166 / 169
页数:4
相关论文
共 15 条
[1]  
Adnan Muhamad Hariz Muhamad, 2012, INT C ADV COMP INF T
[2]  
[Anonymous], INT J COMPUTER SCI I
[3]  
Ashfaq Ahmed K, 2012, IEEE
[4]  
Barakat Nahla H., 2010, IEEE, V14
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]  
Hall Mark, SIGKDD EXPLORATION, V11
[7]  
Huan Lung-Cheng, 2009, J TRANSLATIONAL MED
[8]  
Koklu Murat, 2013, INT J MED HLTH BIOME, V7
[9]  
Pradhan Mrs. Madhavi, INT J COMPUTATIONAL, V2
[10]  
Priya R, 2012, INT J COMPUTER APPL, V41