CONVERGENCE OF INFINITE PRODUCTS OF NONEXPANSIVE OPERATORS IN HILBERT SPACE

被引:0
作者
Pustylnik, Evgeniy [1 ]
Reich, Simeon [1 ]
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Fixed point; Hilbert space; infinite product; nonexpansive operator; orthogonal projection;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using angles between subspaces, we establish several convergence theorems regarding infinite products of orthogonal projections and nonexpansive operators in Hilbert space.
引用
收藏
页码:461 / 474
页数:14
相关论文
共 19 条
[1]  
Amemiya I., 1965, ACTA SCI MATH SZEGED, V26, P239
[2]  
BROWDER FE, 1958, J MATH MECH, V7, P69
[3]  
Deutsch FR., 2012, Best Approximation in Inner Product Spaces
[4]  
Dixmier J., 1949, Bull. Soc. Math. France, V77, P11
[5]   RANDOM PRODUCTS OF CONTRACTIONS IN BANACH-SPACES [J].
DYE, J ;
KHAMSI, MA ;
REICH, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (01) :87-99
[6]   ON THE UNRESTRICTED ITERATION OF PROJECTIONS IN HILBERT-SPACE [J].
DYE, JM ;
REICH, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :101-119
[8]  
Galantai A., 2004, PROJECTORS PROJECTIO, DOI 10.1007/978-1-4419-9180-5
[9]  
Goebel K, 1984, Uniform convexity, hyperbolic geometry, and non-expansive mappings
[10]  
GUNAWAN H, 2005, BEITR ALGEBRA GEOM, V46, P311