Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating

被引:17
作者
Yu, Zhaoxin [1 ]
Shang, Shun-Li [2 ]
Ahn, Kiseuk [1 ]
Marty, Daniel T. [1 ]
Feng, Ruozhu [1 ]
Engelhard, Mark H. [3 ]
Liu, Zi-Kui [2 ]
Lu, Dongping [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Pacific Northwest Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
solid-state electrolyte; sulfide; moisture stability; self-assembly; first-principles calculations; SELF-ASSEMBLED MONOLAYERS; METAL; IMPROVEMENT; CONDUCTION; CATHODE;
D O I
10.1021/acsami.2c07388
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The all-solid-state battery (ASSB) is a promising next-generation energy storage technology for both consumer electronics and electric vehicles because of its high energy density and improved safety. Sulfide solid-state electrolytes (SSEs) have merits of low density, high ionic conductivity, and favorable mechanical properties compared to oxide ceramic and polymer materials. However, mass production and processing of sulfide SSEs remain a grand challenge because of their poor moisture stability. Here, we report a reversible surface coating strategy for enhancing the moisture stability of sulfide SSEs using amphipathic organic molecules. An ultrathin layer of 1-bromopentane is coated on the sulfide SSE surface (e.g., Li7P2S8Br0.5I0.5) via Van der Waals force. 1-Bromopentane has more negative adsorption energy with SSEs than H2O based on first-principles calculations, thereby enhancing the moisture stability of SSEs because the hydrophobic long-chain alkyl tail of 1-bromopentane repels water molecules. Moreover, this amphipathic molecular layer has a negligible effect on ionic conductivity and can be removed reversibly by heating at low temperatures (e.g., 160 degrees C). This finding opens a new pathway for the surface engineering of moisture-sensitive SSEs and other energy materials, thereby speeding up their deployment in ASSBs.
引用
收藏
页码:32035 / 32042
页数:8
相关论文
共 39 条
[1]   Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries [J].
Ahmad, Niaz ;
Zhou, Lei ;
Faheem, Muhammad ;
Tufail, Muhammad Khurram ;
Yang, Le ;
Chen, Renjie ;
Zhou, Yaodan ;
Yang, Wen .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) :21548-21558
[2]   Challenges for and Pathways toward Li-MetalBased All-Solid-State Batteries [J].
Albertus, Paul ;
Anandan, Venkataramani ;
Ban, Chunmei ;
Balsara, Nitash ;
Belharouak, Ilias ;
Buettner-Garrett, Josh ;
Chen, Zonghai ;
Daniel, Claus ;
Doeff, Marca ;
Dudney, Nancy J. ;
Dunn, Bruce ;
Harris, Stephen J. ;
Herle, Subramanya ;
Herbert, Eric ;
Kalnaus, Sergiy ;
Libera, Joesph A. ;
Lu, Dongping ;
Martin, Steve ;
McCloskey, Bryan D. ;
McDowell, Matthew T. ;
Meng, Y. Shirley ;
Nanda, Jagjit ;
Sakamoto, Jeff ;
Self, Ethan C. ;
Tepavcevic, Sanja ;
Wachsman, Eric ;
Wang, Chunsheng ;
Westover, Andrew S. ;
Xiao, Jie ;
Yersak, Thomas .
ACS ENERGY LETTERS, 2021, 6 (04) :1399-1404
[3]   Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries [J].
Guo, Sijie ;
Li, Yutao ;
Li, Bing ;
Grundish, Nicholas S. ;
Cao, An-Min ;
Sun, Yong-Gang ;
Xu, Yan-Song ;
Ji, Yanglimin ;
Qiao, Yan ;
Zhang, Qinghua ;
Meng, Fan-Qi ;
Zhao, Zhi-Hao ;
Wang, Dong ;
Zhang, Xing ;
Gu, Lin ;
Yu, Xiqian ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (05) :2179-2188
[4]   Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles [J].
Hayashi, Akitoshi ;
Muramatsu, Hiromasa ;
Ohtomo, Takamasa ;
Hama, Sigenori ;
Tatsumisago, Masahiro .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (21) :6320-6326
[5]   A high-performance organic cathode customized for sulfide-based all-solid-state batteries [J].
Ji, Weixiao ;
Zhang, Xiaoxiao ;
Xin, Le ;
Luedtke, Avery ;
Zheng, Dong ;
Huang, He ;
Lambert, Tristan ;
Qu, Deyang .
ENERGY STORAGE MATERIALS, 2022, 45 :680-686
[6]   Solid-State Electrolyte Design for Lithium Dendrite Suppression [J].
Ji, Xiao ;
Hou, Singyuk ;
Wang, Pengfei ;
He, Xinzi ;
Piao, Nan ;
Chen, Ji ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (46)
[7]   Functionalized Sulfide Solid Electrolyte with Air-Stable and Chemical-Resistant Oxysulfide Nanolayer for All-Solid-State Batteries [J].
Jung, Wo Dum ;
Jeon, Minjae ;
Shin, Sung Soo ;
Kim, Ji-Su ;
Jung, Hun-Gi ;
Kim, Byung-Kook ;
Lee, Jong-Heun ;
Chung, Yong-Chae ;
Kim, Hyoungchul .
ACS OMEGA, 2020, 5 (40) :26015-26022
[8]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[9]   SELF-ASSEMBLED MONOLAYERS OF N-ALKANETHIOLATES ON COPPER ARE BARRIER FILMS THAT PROTECT THE METAL AGAINST OXIDATION BY AIR [J].
LAIBINIS, PE ;
WHITESIDES, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (23) :9022-9028
[10]   Titanocene perfluorobutanesulfonate catalyzed reduction of disulfides in the presence of zinc to synthesize unsymmetrical sulfides [J].
Li, Ningbo ;
Yao, Jiao ;
Wang, Lingxiao ;
Wei, Jiancong ;
Liu, Wen ;
Liu, Wenqi ;
Xu, Xinhua ;
Liang, Zhiwu .
INORGANIC CHEMISTRY COMMUNICATIONS, 2018, 98 :99-104