Training deep quantum neural networks

被引:373
|
作者
Beer, Kerstin [1 ]
Bondarenko, Dmytro [1 ]
Farrelly, Terry [1 ,2 ]
Osborne, Tobias J. [1 ]
Salzmann, Robert [1 ,3 ]
Scheiermann, Daniel [1 ]
Wolf, Ramona [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
澳大利亚研究理事会;
关键词
PERCEPTRON;
D O I
10.1038/s41467-020-14454-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Deep quantum neural networks on a superconducting processor
    Xiaoxuan Pan
    Zhide Lu
    Weiting Wang
    Ziyue Hua
    Yifang Xu
    Weikang Li
    Weizhou Cai
    Xuegang Li
    Haiyan Wang
    Yi-Pu Song
    Chang-Ling Zou
    Dong-Ling Deng
    Luyan Sun
    Nature Communications, 14
  • [22] QDNN: deep neural networks with quantum layers
    Chen Zhao
    Xiao-Shan Gao
    Quantum Machine Intelligence, 2021, 3
  • [23] Deep neural networks for quantum circuit mapping
    Giovanni Acampora
    Roberto Schiattarella
    Neural Computing and Applications, 2021, 33 : 13723 - 13743
  • [24] Deep quantum neural networks on a superconducting processor
    Pan, Xiaoxuan
    Lu, Zhide
    Wang, Weiting
    Hua, Ziyue
    Xu, Yifang
    Li, Weikang
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Song, Yi-Pu
    Zou, Chang-Ling
    Deng, Dong-Ling
    Sun, Luyan
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] QDNN: deep neural networks with quantum layers
    Zhao, Chen
    Gao, Xiao-Shan
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [26] Deep neural networks for quantum circuit mapping
    Acampora, Giovanni
    Schiattarella, Roberto
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13723 - 13743
  • [27] Detecting Entanglement With Deep Quantum Neural Networks
    Qiu, Peng-Hui
    Chen, Xiao-Guang
    Shi, Yi-Wei
    IEEE ACCESS, 2019, 7 : 94310 - 94320
  • [28] Quantum topology identification with deep neural networks and quantum walks
    Yurui Ming
    Chin-Teng Lin
    Stephen D. Bartlett
    Wei-Wei Zhang
    npj Computational Materials, 5
  • [29] Solving quantum master equations with deep quantum neural networks
    Liu, Zidu
    Duan, L-M
    Deng, Dong-Ling
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [30] Quantum topology identification with deep neural networks and quantum walks
    Ming, Yurui
    Lin, Chin-Teng
    Bartlett, Stephen D.
    Zhang, Wei-Wei
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)