Training deep quantum neural networks

被引:419
作者
Beer, Kerstin [1 ]
Bondarenko, Dmytro [1 ]
Farrelly, Terry [1 ,2 ]
Osborne, Tobias J. [1 ]
Salzmann, Robert [1 ,3 ]
Scheiermann, Daniel [1 ]
Wolf, Ramona [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
澳大利亚研究理事会;
关键词
PERCEPTRON;
D O I
10.1038/s41467-020-14454-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
引用
收藏
页数:6
相关论文
共 46 条
[1]  
Aïmeur E, 2006, LECT NOTES ARTIF INT, V4013, P431
[2]   Quantum speed-up for unsupervised learning [J].
Aimeur, Esma ;
Brassard, Gilles ;
Gambs, Sebastien .
MACHINE LEARNING, 2013, 90 (02) :261-287
[3]  
Altaisky M.V., 2001, Quantum neural network
[4]   Supervised Quantum Learning without Measurements [J].
Alvarez-Rodriguez, Unai ;
Lamata, Lucas ;
Escandell-Montero, Pablo ;
Martin-Guerrero, Jose D. ;
Solano, Enrique .
SCIENTIFIC REPORTS, 2017, 7
[5]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[6]  
[Anonymous], 2008, QUANTUM CLASSIFICATI
[7]  
[Anonymous], QUANT MACH LEARN WIK
[8]  
[Anonymous], 2016, Deep Learning
[9]  
[Anonymous], EXPRESSIVE POWER PAR
[10]  
[Anonymous], PHYS REV RES