Training deep quantum neural networks

被引:377
作者
Beer, Kerstin [1 ]
Bondarenko, Dmytro [1 ]
Farrelly, Terry [1 ,2 ]
Osborne, Tobias J. [1 ]
Salzmann, Robert [1 ,3 ]
Scheiermann, Daniel [1 ]
Wolf, Ramona [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
澳大利亚研究理事会;
关键词
PERCEPTRON;
D O I
10.1038/s41467-020-14454-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] Aïmeur E, 2006, LECT NOTES ARTIF INT, V4013, P431
  • [2] Quantum speed-up for unsupervised learning
    Aimeur, Esma
    Brassard, Gilles
    Gambs, Sebastien
    [J]. MACHINE LEARNING, 2013, 90 (02) : 261 - 287
  • [3] Altaisky M.V., 2001, Quantum neural network
  • [4] Supervised Quantum Learning without Measurements
    Alvarez-Rodriguez, Unai
    Lamata, Lucas
    Escandell-Montero, Pablo
    Martin-Guerrero, Jose D.
    Solano, Enrique
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Quantum Boltzmann Machine
    Amin, Mohammad H.
    Andriyash, Evgeny
    Rolfe, Jason
    Kulchytskyy, Bohdan
    Melko, Roger
    [J]. PHYSICAL REVIEW X, 2018, 8 (02):
  • [6] [Anonymous], 2008, QUANTUM CLASSIFICATI
  • [7] [Anonymous], QUANT MACH LEARN WIK
  • [8] [Anonymous], EXPRESSIVE POWER PAR
  • [9] [Anonymous], PHYS REV RES
  • [10] Machine learning method for state preparation and gate synthesis on photonic quantum computers
    Arrazola, Juan Miguel
    Bromley, Thomas R.
    Izaac, Josh
    Myers, Casey R.
    Bradler, Kamil
    Killoran, Nathan
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02):