Environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development

被引:27
作者
Chen, Pubo [1 ]
Huang, Jie [2 ]
Rao, Liuyu [2 ]
Zhu, Wengen [2 ]
Yu, Yuhe [2 ]
Xiao, Fanshu [1 ]
Yu, Huang [1 ]
Wu, Yongjie [1 ]
Hu, Ruiwen [1 ]
Liu, Xingyu [1 ]
He, Zhili [1 ,3 ]
Yan, Qingyun [1 ]
机构
[1] Sun Yat Sen Univ, Environm Microhi Res Ctr, Sch Environm Sci & Engn, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510006, Peoples R China
[2] Chinese Acad Sci, Inst Hydrobiol, Key Lab Aquat Biodivers & Conservat, Wuhan 430072, Peoples R China
[3] Hunan Agr Univ, Coll Agron, Changsha 410128, Peoples R China
基金
中国国家自然科学基金;
关键词
Environmental effects; Zebrafish; Engineered nanoparticles; Gut microbiota; High-throughput sequencing; TITANIUM-DIOXIDE NANOPARTICLES; SILVER NANOPARTICLES; TOXICITY ASSESSMENT; ZNO NANOPARTICLES; EXPOSURE; COMPETITION; RESILIENCE; GRAPHENE; IMMUNITY; HEALTH;
D O I
10.1016/j.scitotenv.2021.150963
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The environmental stresses could significantly affect the structure and functions of microbial communities colonized in the gut ecosystem. However, little is known about how engineered nanoparticles (ENPs), which have recently become a common pollutant in the environment, affect the gut microbiota across fish development. Based on the high-throughput sequencing of the 16S rRNA gene amplicon, we explored the ecological succession of gut microbiota in zebrafish exposed to nanoparticles for three months. The nanoparticles used herein including titanium dioxide nanoparticles (nTiO(2), 100 mu g/L), zinc oxide nanoparticles (nZnO, 100 mu g/L), and selenium nanoparticles (nSe, 100 mu g/L). Our results showed that nanoparticles exposure reduced the alpha diversity of gut microbiota at 73-90 days post-hatching (dph), but showed no significant effects at 14-36 dph. Moreover, nTiO(2) significantly (p < 0.05) altered the composition of the gut microbial communities at 73-90 dph (e.g., decreasing abundance of Cetobacterium and Vibrio). Moreover, we found that homogeneous selection was the major process (16.6-57.8%) governing the community succession of gut microbiota. Also, nanopartides exposure caused topological alterations to microbial networks and led to increased positive interactions to destabilize the gut microbial community. This study reveals the environmental effects of nanopartides on the ecological succession of gut microbiota across zebrafish development, which provides novel insights to understand the gut microbial responses to ENPs over the development of aquatic animals. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 75 条
[1]   Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms [J].
Abbas, Qumber ;
Yousaf, Balal ;
Ullah, Habib ;
Ali, Muhammad Ubaid ;
Ok, Yong Sik ;
Rinklebe, Joerg .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 50 (23) :2523-2581
[2]   Titanium Dioxide Nanoparticles Elicit Lower Direct Inhibitory Effect on Human Gut Microbiota Than Silver Nanoparticles [J].
Agans, Richard T. ;
Gordon, Alex ;
Hussain, Saber ;
Paliy, Oleg .
TOXICOLOGICAL SCIENCES, 2019, 172 (02) :411-416
[3]   Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua) [J].
Bakke, Ingrid ;
Coward, Eivind ;
Andersen, Tom ;
Vadstein, Olav .
ENVIRONMENTAL MICROBIOLOGY, 2015, 17 (10) :3914-3924
[4]   Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation [J].
Bates, Jennifer M. ;
Mittge, Erika ;
Kuhlman, Julie ;
Baden, Katrina N. ;
Cheesman, Sarah E. ;
Guillemin, Karen .
DEVELOPMENTAL BIOLOGY, 2006, 297 (02) :374-386
[5]   Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity [J].
Brinkmann, Bregje W. ;
Koch, Bjorn E. V. ;
Spaink, Herman P. ;
Peijnenburg, Willie J. G. M. ;
Vijver, Martina G. .
NANOTOXICOLOGY, 2020, 14 (06) :725-739
[6]   Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity [J].
Buerger, Amanda N. ;
Dillon, David T. ;
Schmidt, Jordan ;
Yang, Tao ;
Zubcevic, Jasenka ;
Martyniuk, Christopher J. ;
Bisesi, Joseph H., Jr. .
ENVIRONMENTAL POLLUTION, 2020, 265
[7]   Nanoparticles in the environment: where do we come from, where do we go to? [J].
Bundschuh, Mirco ;
Filser, Juliane ;
Luderwald, Simon ;
Mckee, Moira S. ;
Metreveli, George ;
Schaumann, Gabriele E. ;
Schulz, Ralf ;
Wagner, Stephan .
ENVIRONMENTAL SCIENCES EUROPE, 2018, 30
[8]   Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model [J].
Burns, Adam R. ;
Miller, Elizabeth ;
Agarwal, Meghna ;
Rolig, Annah S. ;
Milligan-Myhre, Kathryn ;
Seredick, Steve ;
Guillemin, Karen ;
Bohannan, Brendan J. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (42) :11181-11186
[9]   Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development [J].
Burns, Adam R. ;
Stephens, W. Zac ;
Stagaman, Keaton ;
Wong, Sandi ;
Rawls, John F. ;
Guillemin, Karen ;
Bohannan, Brendan J. M. .
ISME JOURNAL, 2016, 10 (03) :655-664
[10]   Feedback mechanisms of periphytic biofilms to ZnO nanoparticles toxicity at different phosphorus levels [J].
Cai, Shujie ;
Wang, Haotian ;
Tang, Jun ;
Tang, Xiufeng ;
Guan, Peng ;
Li, Jiuyu ;
Jiang, Yuji ;
Wu, Yonghong ;
Xu, Renkou .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 416