A generalization of intertwining operators for vertex operator algebras

被引:0
作者
Tanabe, Kenichiro [1 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Kita 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
关键词
Vertex operator algebras; Intertwining operators; N-graded weak modules; Zhu algebras; FUSION RULES; AUTOMORPHISM; REPRESENTATIONS; ORBIFOLD; MODULES;
D O I
10.1016/j.jalgebra.2017.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a vertex operator algebra V, we generalize the notion of an intertwining operator among an arbitrary triple of V-modules to an arbitrary triple of N-graded weak V-modules and study their properties. We show a formula for the dimensions of the spaces of these intertwining operators in terms of modules over the Zhu algebras under some conditions on N-graded weak modules. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:372 / 401
页数:30
相关论文
共 21 条
[1]   Fusion rules for the free bosonic orbifold vertex operator algebra [J].
Abe, T .
JOURNAL OF ALGEBRA, 2000, 229 (01) :333-374
[2]   Fusion rules for the vertex operator algebras M(1)+ and VL+ [J].
Abe, T ;
Dong, CY ;
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :171-219
[3]   Fusion rules for the charge conjugation orbifold [J].
Abe, T .
JOURNAL OF ALGEBRA, 2001, 242 (02) :624-655
[5]  
Dong C., 1994, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, V56 II, P295
[6]   Twisted representations of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :571-600
[7]  
Frenkel I., 1988, VERTEX OPERATOR ALGE
[8]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[9]  
FRENKEL IB, 1993, MEM AM MATH SOC, V104, pR6
[10]   A logarithmic generalization of tensor product theory for modules for a vertex operator algebra [J].
Huang, Yi-Zhi ;
Lepowsky, James ;
Zhang, Lin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (08) :975-1012