Single-Phase Differential Buck-Boost Inverter With Pulse Energy Modulation and Power Decoupling Control

被引:37
作者
Xu, Shuang [1 ]
Shao, Riming [1 ]
Chang, Liuchen [1 ]
Mao, Meiqin [2 ]
机构
[1] Univ New Brunswick, Emera & NB Power Res Ctr Smart Grid Technol, Fredericton, NB E3B 5A3, Canada
[2] Hefei Univ Technol, Res Ctr Photovolta Syst Engn, Minist Educ, Sch Elect Engn & Automat, Hefei 230009, Anhui, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Buck-boost inverter; power decoupling; pulse energy modulation (PEM); DC-AC CONVERTER; RIPPLE; EXPERIMENTATION; CAPACITANCE; RECTIFIERS; SYSTEMS; DESIGN;
D O I
10.1109/JESTPE.2018.2832213
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a single-phase differential buck-boost inverter that possesses both buck-boost and active power decoupling functions without adding any power electronics or increasing the complexity of driver circuits, as compared with the previous differential inverters. Two types of operating principles are introduced: the unipolar operation with new pulse energy modulation technique enabling the inverter to operate under both discontinuous conduction mode and continuous conduction mode, and the bipolar operation with energy-based active power decoupling delivering the second-order ripple power into the output film capacitors, thus eliminating the large electrolytic capacitor at the dc side. Small-signal modeling analysis is conducted to show the characteristics of the proposed system and control. Simulation and experimental results verified the feasibility of operating principles for the differential buck-boost inverter and successful power decoupling with substantial reduction of second-order component in the dc current.
引用
收藏
页码:2060 / 2072
页数:13
相关论文
共 33 条
[1]   An Input Current Feedback Method to Mitigate the DC-Side Low-Frequency Ripple Current in a Single-Phase Boost Inverter [J].
Abeywardana, Damith B. Wickramasinghe ;
Hredzak, Branislav ;
Agelidis, Vassilios G. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (06) :4594-4603
[2]  
[Anonymous], 2014, PROC IEEE 5 INT S PO
[3]  
Bush C. R., 2013, THESIS
[4]  
Caceres R, 1995, IEEE IND ELEC, P546, DOI 10.1109/IECON.1995.483467
[5]   A boost DC-AC converter: Analysis, design, and experimentation [J].
Caceres, RO ;
Barbi, I .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1999, 14 (01) :134-141
[6]   A buck-boost DC-AC converter:: Operation, analysis, and control. [J].
Cáceres, RO ;
García, WM ;
Camacho, OE .
CIEP'98: VI IEEE INTERNATIONAL POWER ELECTRONICS CONGRESS, TECHNICAL PROCEEDINGS, 1998, :126-131
[7]   DC Capacitor-Less Inverter for Single-Phase Power Conversion With Minimum Voltage and Current Stress [J].
Chen, Runruo ;
Liu, Yunting ;
Peng, Fang Zheng .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (10) :5499-5507
[8]  
Fan SF, 2012, IEEE ENER CONV, P2439, DOI 10.1109/ECCE.2012.6342406
[9]   A Single-Stage Microinverter Without Using Eletrolytic Capacitors [J].
Hu, Haibing ;
Harb, Souhib ;
Kutkut, Nasser H. ;
Shen, Z. John ;
Batarseh, Issa .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (06) :2677-2687
[10]   A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems [J].
Hu, Haibing ;
Harb, Souhib ;
Kutkut, Nasser ;
Batarseh, Issa ;
Shen, Z. John .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (06) :2711-2726