Low-Latency Federated Reinforcement Learning-Based Resource Allocation in Converged Access Networks

被引:0
作者
Ruan, Lihua [1 ]
Mondal, Sourav [1 ]
Dias, Imali [1 ]
Wong, Elaine [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC) | 2020年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a federated reinforcement learning (FedRL) solution to innovate resource allocation in converged access networks. FedRL lowers network latency with reinforcement-learnt bandwidth decision and achieves fast learning with federated learning efforts.
引用
收藏
页数:3
相关论文
共 6 条
[1]   DeepRMSA: A Deep Reinforcement Learning Framework for Routing, Modulation and Spectrum Assignment in Elastic Optical Networks [J].
Chen, Xiaoliang ;
Li, Baojia ;
Proietti, Roberto ;
Lu, Hongbo ;
Zhu, Zuqing ;
Yoo, S. J. Ben .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (16) :4155-4163
[2]  
Freiberger-Verizon M, 2018, P OFC
[3]  
Hanaya N, 2018, P OFC
[4]  
McMahan H. B., 2017, P AISTATS
[5]  
Suarez-Varela J, 2019, P OFC
[6]  
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1