Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure

被引:21
作者
Fahsyar, Puteri Nor Aznie [1 ,2 ]
Ludin, Norasikin Ahmad [1 ]
Ramli, Noor Fadhilah [1 ]
Sepeai, Suhaila [1 ]
Suait, Mohd Sukor [1 ]
Ibrahim, Mohd Adib [1 ]
Teridi, Mohd Asri [1 ]
Sopian, Kamaruzzaman [1 ]
机构
[1] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Bangi, Selangor, Malaysia
[2] UOW Malaysia KDU, Sch Engn, Shah Alam, Selangor, Malaysia
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2021年 / 127卷 / 05期
关键词
Hole transport layer; Perovskite solar cells; SCAPS; MoS2; concentration; Efficiency; HOLE-TRANSPORT LAYER; HIGHLY EFFICIENT; COPPER PHTHALOCYANINE; GRAPHENE-OXIDE; 4-TERT-BUTYLPYRIDINE; DEFECT;
D O I
10.1007/s00339-021-04531-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, experimental photovoltaic performance and numerical simulations are compared for perovskite solar cells devices with MoS2 hybrid hole transporting layer (HTL) structure. Experimentally, it is established that the incorporation of MoS2 with 2 mg/ml concentration effectively acts as a barrier to ion migration and minimizes the shunt contact. The optimum absorber thickness, defect density, and optimum MoS2 thickness were theoretically evaluated and discussed by modeling the electrical characteristics of the cells using SCAPS-1D software, hence, the correlation of structural and morphologic tuning can be examined. The optimum absorber thickness of 400 nm and 363 nm was shown for simulation and experimental, respectively, meanwhile, the optimum MoS2 thickness of 30 nm recorded in the simulation was agreed by an experimental thickness of 29 nm. Remarkably, the surface morphology of the perovskite layer with visible pinholes was observed and successfully concealed by the optimum MoS2 concentration. The simulated HTL structure based on the optimized parameters showed an efficiency of 11.24%, and the hybrid-HTL structure showed a significant enhancement in the efficiency by up to 14.16%. Further validation via experiment, the efficiency of 8.3% and 9.5% was obtained for the HTL and hybrid-HTL structures, respectively. Thus, the results revealed that the structural and morphologic tuning can establish a beneficial guide for the optimization and fabrication of devices from the simulation and experimental perspectives.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer [J].
Adam, Getachew ;
Kaltenbrunner, Martin ;
Glowacki, Eric Daniel ;
Apaydin, Dogukan Hazar ;
White, Matthew Schuette ;
Heilbrunner, Herwig ;
Tombe, Sekai ;
Stadler, Philipp ;
Ernecker, Bruno ;
Klampfl, Christian Wolfgang ;
Sariciftci, Niyazi Serdar ;
Scharber, Markus Clark .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :318-325
[2]   Organometal halide perovskite solar cells: degradation and stability [J].
Berhe, Taame Abraha ;
Su, Wei-Nien ;
Chen, Ching-Hsiang ;
Pan, Chun-Jern ;
Cheng, Ju-Hsiang ;
Chen, Hung-Ming ;
Tsai, Meng-Che ;
Chen, Liang-Yih ;
Dubale, Amare Aregahegn ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :323-356
[3]   Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells [J].
Capasso, Andrea ;
Matteocci, Fabio ;
Najafi, Leyla ;
Prato, Mirko ;
Buha, Joka ;
Cina, Lucio ;
Pellegrini, Vittorio ;
Di Carlo, Aldo ;
Bonaccorso, Francesco .
ADVANCED ENERGY MATERIALS, 2016, 6 (16)
[4]   A facile method to evaluate the influence of trap densities on perovskite solar cell performance [J].
Chen, Bingbing ;
Hu, Hongwei ;
Salim, Teddy ;
Lam, Yeng Ming .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (19) :5646-5651
[5]   The rapid evolution of highly efficient perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Abate, Antonio ;
Saliba, Michael ;
Tress, Wolfgang ;
Jacobsson, T. Jesper ;
Gratzel, Michael ;
Hagfeldt, Anders .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) :710-727
[6]   In situ observation of heat-induced degradation of perovskite solar cells [J].
Divitini, G. ;
Cacovich, S. ;
Matteocci, F. ;
Cina, L. ;
Di Carlo, A. ;
Ducati, C. .
NATURE ENERGY, 2016, 1
[7]   Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer [J].
Guarnera, Simone ;
Abate, Antonio ;
Zhang, Wei ;
Foster, Jamie M. ;
Richardson, Giles ;
Petrozza, Annamaria ;
Snaith, Henry J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (03) :432-437
[8]   Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells [J].
Huang, Peng ;
Wang, Zhaowei ;
Liu, Yanfeng ;
Zhang, Kaicheng ;
Yuan, Ligang ;
Zhou, Yi ;
Song, Bo ;
Li, Yongfang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) :25323-25331
[9]   CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells [J].
Jeng, Jun-Yuan ;
Chiang, Yi-Fang ;
Lee, Mu-Huan ;
Peng, Shin-Rung ;
Guo, Tzung-Fang ;
Chen, Peter ;
Wen, Ten-Chin .
ADVANCED MATERIALS, 2013, 25 (27) :3727-3732
[10]   Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J].
Kojima, Akihiro ;
Teshima, Kenjiro ;
Shirai, Yasuo ;
Miyasaka, Tsutomu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (17) :6050-+