Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

被引:425
作者
Selig, Malte [1 ]
Berghaeuser, Gunnar [1 ]
Raja, Archana [2 ,3 ]
Nagler, Philipp [4 ]
Schueller, Christian [4 ]
Heinz, Tony F. [3 ,5 ,6 ,7 ]
Korn, Tobias [4 ]
Chernikov, Alexey [4 ,6 ,7 ]
Malic, Ermin [8 ]
Knorr, Andreas [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, D-10623 Berlin, Germany
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[5] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[6] Columbia Univ, Dept Phys, New York, NY 10027 USA
[7] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[8] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
关键词
LAYER MOS2; PHOTOLUMINESCENCE; SEMICONDUCTORS;
D O I
10.1038/ncomms13279
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Exciton band structure in layered MoSe2: from a monolayer to the bulk limit [J].
Arora, Ashish ;
Nogajewski, Karol ;
Molas, Maciej ;
Koperski, Maciej ;
Potemski, Marek .
NANOSCALE, 2015, 7 (48) :20769-20775
[2]   Excitonic resonances in thin films of WSe2: from monolayer to bulk material [J].
Arora, Ashish ;
Koperski, Maciej ;
Nogajewski, Karol ;
Marcus, Jacques ;
Faugeras, Clement ;
Potemski, Marek .
NANOSCALE, 2015, 7 (23) :10421-10429
[3]   Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics [J].
Axt, VM ;
Kuhn, T .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (04) :433-512
[4]   Analytical approach to excitonic properties of MoS2 [J].
Berghaeuser, Gunnar ;
Malic, Ermin .
PHYSICAL REVIEW B, 2014, 89 (12)
[5]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[6]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[7]   Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane [J].
Cudazzo, Pierluigi ;
Tokatly, Ilya V. ;
Rubio, Angel .
PHYSICAL REVIEW B, 2011, 84 (08)
[8]   Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions [J].
Dey, P. ;
Paul, J. ;
Wang, Z. ;
Stevens, C. E. ;
Liu, C. ;
Romero, A. H. ;
Shan, J. ;
Hilton, D. J. ;
Karaiskaj, D. .
PHYSICAL REVIEW LETTERS, 2016, 116 (12)
[9]   Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides [J].
Glazov, M. M. ;
Amand, T. ;
Marie, X. ;
Lagarde, D. ;
Bouet, L. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2014, 89 (20)
[10]  
Haug H., 2009, Quantum Theory of the Optical and Electronic Properties of Semiconductors, V5