Stability of High-Order Finite-Difference Schemes for Poroelastic Wave Simulation

被引:1
作者
Zhang, Wensheng [1 ,2 ]
Joardar, Atish Kumar [2 ,3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Islamic Univ, Dept Math, Kushtia 7003, Bangladesh
基金
中国国家自然科学基金;
关键词
Stability; poroelastic wave equation; energy method; high-order scheme; wave simulation; DISCONTINUOUS GALERKIN METHOD; PERFECTLY MATCHED LAYER; ELASTIC-WAVES; UNSTRUCTURED MESHES; BOUNDARY-CONDITIONS; GRAZING-INCIDENCE; VELOCITY-STRESS; PROPAGATION; EQUATIONS; FAMILY;
D O I
10.4208/eajam.260122.280422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability of high-order finite-difference schemes on a staggered-grid for two-dimensional poroelastic wave equations with spatially varying material parameters is studied. Using the energy method, we obtain sufficient stability conditions. This al-lows to find suitable time and spatial steps according to material parameters and the difference scheme coefficients. Two numerical examples verify the theoretical analysis and show that the corresponding range for the time step is close to that in the neces-sary condition. The perfectly matched layer is adopted in order to eliminate boundary reflections.
引用
收藏
页码:891 / 911
页数:21
相关论文
共 47 条
[1]   Stability of discrete schemes of Biot's poroelastic equations [J].
Alkhimenkov, Y. ;
Khakimova, L. ;
Podladchikov, Y. Y. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 225 (01) :354-377
[2]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132
[3]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[6]   MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (04) :1482-+
[7]  
Carcione J. M., 2007, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media
[8]   Computational poroelasticity - A review [J].
Carcione, Jose M. ;
Morency, Christina ;
Santos, Juan E. .
GEOPHYSICS, 2010, 75 (05) :A229-A243
[9]  
Chan HN, 2013, INT J NUMER ANAL MOD, V10, P233
[10]   Optimal discontinuous Galerkin methods for wave propagation [J].
Chung, Eric T. ;
Engquist, Bjorn .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2131-2158