Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans

被引:46
|
作者
Podoll, Terry [1 ]
Pearson, Paul G. [2 ]
Evarts, Jerry [1 ]
Ingallinera, Tim [1 ]
Bibikova, Elena [1 ]
Sun, Hao [1 ,3 ]
Gohdes, Mark [3 ]
Cardinal, Kristen [3 ]
Sanghvi, Mitesh [4 ]
Slatter, J. Greg [1 ]
机构
[1] Acerta Pharma, San Francisco, CA USA
[2] Pearson Pharma Partners, Westlake Village, CA USA
[3] Covance, Madison, WI USA
[4] Xceleron, Germantown, MD USA
关键词
ACCELERATOR MASS-SPECTROMETRY; METABOLISM; PHARMACOKINETICS; PREDICTION; CLEARANCE; AFATINIB; ACP-196;
D O I
10.1124/dmd.118.084459
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [C-14] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% +/- 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [C-14] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [C-14] Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[ 8-amino-3-[4-(but-2-ynoylamino) butanoyl] imidazo[1,5-a] pyrazin-1yl]- N-(2-pyridyl) benzamide), was produced by CYP3A oxidation. Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a beta-ketoamide. Total radioactivity recovery was 95.7% +/- 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [1] MICROTRACER BIOAVAILABILITY, BIOTRANSFORMATION MECHANISMS, AND EXCRETION OF THE COVALENT BTK INHIBITOR ACALABRUTINIB IN HUMANS
    Podoll, Terry
    Pearson, Paul G.
    Evarts, Jerry
    Ingallinera, Tim
    Bibikova, Elena
    Sun, Hao
    Gohdes, Mark
    Byard, Stephen
    Cardinal, Kristen
    Sanghvi, Mitesh
    Slatter, J. Greg
    DRUG METABOLISM AND PHARMACOKINETICS, 2020, 35 (01) : S74 - S75
  • [2] Rilzabrutinib, a reversible covalent Bruton's tyrosine kinase inhibitor: Absorption, metabolism, excretion, and absolute bioavailability in healthy participants
    Ucpinar, Sibel
    Smith, Patrick F.
    Long, Li
    Li, Fujun
    Yan, Hui
    Wadhwa, Jyoti
    Chu, Katherine A.
    Shu, Jin
    Nunn, Philip
    Li, Mengyao
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2023, 16 (07): : 1210 - 1219
  • [3] Bruton tyrosine-kinase inhibitor on the rise: acalabrutinib in Waldenstrom macroglobulinemia
    Buske, Christian
    LANCET HAEMATOLOGY, 2020, 7 (02): : E85 - E86
  • [4] Acalabrutinib: a bruton tyrosine kinase inhibitor for the treatment of chronic lymphocytic leukemia
    Wolska-Washer, Anna
    Robak, Tadeusz
    EXPERT REVIEW OF HEMATOLOGY, 2022, 15 (03) : 183 - 194
  • [5] Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile
    Barf, Tjeerd
    Covey, Todd
    Izumi, Raquel
    van de Kar, Bas
    Gulrajani, Michael
    van Lith, Bart
    van Hoek, Maaike
    de Zwart, Edwin
    Mittag, Diana
    Demont, Dennis
    Verkaik, Saskia
    Krantz, Fanny
    Pearson, Paul G.
    Ulrich, Roger
    Kaptein, Allard
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2017, 363 (02): : 240 - 252
  • [6] Exposure-Response of the Bruton Tyrosine Kinase Inhibitor, Acalabrutinib, in the Treatment of Hematologic Malignancies
    Jin, Feng
    Yin, Ming
    Mandava, Vinay
    Edlund, Helena
    Andrew, Marilee
    Patel, Priti
    Masson, Eric
    Al-Huniti, Nidal
    Wang, Xiaolin
    Slatter, J. Greg
    BLOOD, 2017, 130
  • [7] The highly selective Bruton tyrosine kinase inhibitor acalabrutinib leaves macrophage phagocytosis intact
    Pinney, Jonathan J.
    Blick-Nitko, Sara K.
    Baran, Andrea M.
    Peterson, Derick R.
    Whitehead, Hannah E.
    Izumi, Raquel
    Munugalavadla, Veerendra
    VanDerMeid, Karl R.
    Barr, Paul M.
    Zent, Clive S.
    Elliott, Michael R.
    Chu, Charles C.
    HAEMATOLOGICA, 2022, 107 (06) : 1460 - 1465
  • [8] Acalabrutinib: A Selective Bruton Tyrosine Kinase Inhibitor for the Treatment of B-Cell Malignancies
    Abbas, Hussein A.
    Wierda, William G.
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [9] Ibrutinib: a first in class covalent inhibitor of Bruton's tyrosine kinase
    Davids, Matthew S.
    Brown, Jennifer R.
    FUTURE ONCOLOGY, 2014, 10 (06) : 957 - 967
  • [10] Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton's Tyrosine Kinase Inhibitor Acalabrutinib
    Zhao, Yanan
    Chakraborty, Praloy
    Tomassetti, Julianna
    Subha, Tasnia
    Masse, Stephane
    Thavendiranathan, Paaladinesh
    Billia, Filio
    Lai, Patrick F. H.
    Abdel-Qadir, Husam
    Nanthakumar, Kumaraswamy
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)