High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum

被引:13
作者
Jungmann, Lukas [1 ]
Hoffmann, Sarah Lisa [1 ]
Lang, Caroline [1 ]
De Agazio, Raphaela [1 ]
Becker, Judith [1 ]
Kohlstedt, Michael [1 ]
Wittmann, Christoph [1 ]
机构
[1] Saarland Univ, Inst Syst Biotechnol, Campus A1 5, Saarbrucken, Germany
关键词
Corynebacterium glutamicum; Extremolyte; Ectoine; 5-Hydroxyectoine; Ectoine hydroxylase; Biotransformation; Intracellular metabolite; Proline; Trehalose; High-value product; INTRACELLULAR AMINO-ACIDS; VALUE ACTIVE INGREDIENTS; COMPATIBLE SOLUTES; FERMENTATIVE PRODUCTION; ECTOINE; LYSINE; HYDROXYECTOINE; PLATFORM; PATHWAY; HEALTH;
D O I
10.1186/s12934-022-02003-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Extremolytes enable microbes to withstand even the most extreme conditions in nature. Due to their unique protective properties, the small organic molecules, more and more, become high-value active ingredients for the cosmetics and the pharmaceutical industries. While ectoine, the industrial extremolyte flagship, has been successfully commercialized before, an economically viable route to its highly interesting derivative 5-hydroxyectoine (hydroxyectoine) is not existing. Results: Here, we demonstrate high-level hydroxyectoine production, using metabolically engineered strains of C. glutamicum that express a codon-optimized, heterologous ectD gene, encoding for ectoine hydroxylase, to convert supplemented ectoine in the presence of sucrose as growth substrate into the desired derivative. Fourteen out of sixteen codon-optimized ectD variants from phylogenetically diverse bacterial and archaeal donors enabled hydroxyectoine production, showing the strategy to work almost regardless of the origin of the gene. The genes from Pseudomonas stutzeri (PST) and Mycobacterium smegmatis (MSM) worked best and enabled hydroxyectoine production up to 97% yield. Metabolic analyses revealed high enrichment of the ectoines inside the cells, which, inter alia, reduced the synthesis of other compatible solutes, including proline and trehalose. After further optimization, C. glutamicum Ptuf ectD(PST) achieved a titre of 74 g L-1 hydroxyectoine at 70% selectivity within 12 h, using a simple batch process. In a two-step procedure, hydroxyectoine production from ectoine, previously synthesized fermentatively with C. glutamicum ectABC(opt), was successfully achieved without intermediate purification. Conclusions: C. glutamicum is a well-known and industrially proven host, allowing the synthesis of commercial products with granted GRAS status, a great benefit for a safe production of hydroxyectoine as active ingredient for cosmetic and pharmaceutical applications. Because ectoine is already available at commercial scale, its use as precursor appears straightforward. In the future, two-step processes might provide hydroxyectoine de novo from sugar.
引用
收藏
页数:19
相关论文
共 89 条
[21]   Topical Ectoine: A Promising Molecule in the Upper Airways Inflammation-A Systematic Review [J].
Casale, Manuele ;
Moffa, Antonio ;
Carbone, Samanta ;
Fraccaroli, Francesca ;
Costantino, Andrea ;
Sabatino, Lorenzo ;
Lopez, Michele Antonio ;
Baptista, Peter ;
Cassano, Michele ;
Rinaldi, Vittorio .
BIOMED RESEARCH INTERNATIONAL, 2019, 2019
[22]   Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, Halomonas salina BCRC 17875 [J].
Chen, Wei-Chuan ;
Hsu, Ching-Cha ;
Wang, Li-Fen ;
Lan, John Chi-Wei ;
Chang, Yu-Kaung ;
Wei, Yu-Hong .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2019, 128 (03) :332-336
[23]   A High-Efficiency Artificial Synthetic Pathway for 5-Aminovalerate Production From Biobased L-Lysine in Escherichia coli [J].
Cheng, Jie ;
Tu, Wenying ;
Luo, Zhou ;
Gou, Xinghua ;
Li, Qiang ;
Wang, Dan ;
Zhou, Jingwen .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
[24]   Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis [J].
Czech, Laura ;
Hermann, Lucas ;
Stoeveken, Nadine ;
Richter, Alexandra A. ;
Hoeppner, Astrid ;
Smits, Sander H. J. ;
Heider, Johann ;
Bremer, Erhard .
GENES, 2018, 9 (04)
[25]   EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion [J].
Czech, Laura ;
Stoeveken, Nadine ;
Bremer, Erhard .
MICROBIAL CELL FACTORIES, 2016, 15
[26]  
Eggeling L., 2005, Handbook of Corynebacterium glutamicum
[27]   A prospective, controlled study of SNS01 (ectoine nasal spray) compared to BNO-101 (phytotherapeutic dragees) in patients with acute rhinosinusitis [J].
Eichel, Andrea ;
Wittig, Jo ;
Shah-Hosseini, Kija ;
Moesges, Ralph .
CURRENT MEDICAL RESEARCH AND OPINION, 2013, 29 (07) :739-746
[28]   Synthesis and release of the bacterial compatible solute 5-hydroxyectoine in Hansenula polymorpha [J].
Eilert, Eva ;
Kranz, Andreas ;
Hollenberg, Cornelis P. ;
Piontek, Michael ;
Suckow, Manfred .
JOURNAL OF BIOTECHNOLOGY, 2013, 167 (02) :85-93
[29]   Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes [J].
Empadinhas, Nuno ;
da Costa, Milton S. .
INTERNATIONAL MICROBIOLOGY, 2008, 11 (03) :151-161
[30]   Comparison of the compatible solute pool of two slightly halophilic planctomycetes species, Gimesia maris and Rubinisphaera brasiliensis [J].
Ferreira, Catarina ;
Soares, Ana R. ;
Lamosa, Pedro ;
Santos, Manuel A. ;
da Costa, Milton S. .
EXTREMOPHILES, 2016, 20 (06) :811-820