Joint Feature and Labeling Function Adaptation for Unsupervised Domain Adaptation

被引:2
|
作者
Cui, Fengli [1 ]
Chen, Yinghao [1 ]
Du, Yuntao [1 ]
Cao, Yikang [1 ]
Wang, Chongjun [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Transfer learning; Unsupervised domain adaptation; Labeling function adaptation;
D O I
10.1007/978-3-031-05933-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Although having achieved remarkable progress, most existing methods only focus on learning domain-invariant features and achieving a small source error. They ignore the discrepancy between labeling functions which will also cause discrepancy across domains. Inspired by this observation, we propose a novel method to simultaneously perform feature adaptation and labeling function adaptation. Specifically, for the feature adaptation, a domain discriminator is trained to reduce the discrepancy between feature distributions across domains. For the labeling function adaptation, we introduce a target predictor and a predictor discriminator. The target predictor is trained on target samples with pseudo-labels. The predictor discriminator is a novel component and is trained to distinguish whether the prediction output is from the source or the target predictor while the feature extractor and the label predictors try to confuse the predictor discriminator in an adversarial manner. Additionally, the intrinsic characteristics of the target domain are expected to be exploited thanks to the task-specific training. Comprehensive experiments are conducted and results validate the effectiveness of labeling function adaptation and demonstrate that our approach outperforms state-of-the-art methods.
引用
收藏
页码:432 / 446
页数:15
相关论文
共 50 条
  • [21] Unsupervised domain adaptation bearing fault diagnosis method based on joint feature alignment
    Feng, Xiaoliang
    Zhang, Zhiwei
    Zhao, Aiming
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (24) : 11356 - 11365
  • [22] Joint category-level and discriminative feature learning networks for unsupervised domain adaptation
    Zhang, Pengyu
    Huang, Junchu
    Zhou, Zhiheng
    Chen, Zengqun
    Shang, Junyuan
    Yang, Zhiwei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8499 - 8510
  • [23] Unsupervised detector adaptation by joint dataset feature learning
    Htike, Kyaw Kyaw
    Hogg, David
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8671 : 270 - 277
  • [24] Unsupervised Detector Adaptation by Joint Dataset Feature Learning
    Htike, Kyaw Kyaw
    Hogg, David
    COMPUTER VISION AND GRAPHICS, ICCVG 2014, 2014, 8671 : 270 - 277
  • [25] Exploiting Local Feature Patterns for Unsupervised Domain Adaptation
    Wen, Jun
    Liu, Risheng
    Zheng, Nenggan
    Zheng, Qian
    Gong, Zhefeng
    Yuan, Junsong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5401 - 5408
  • [26] DFA: Decoupling Feature Alignment for Unsupervised Domain Adaptation
    Wen, Zhongyi
    Li, Qiang
    Wang, Yatong
    Xu, Luyan
    Shao, Huaizong
    Sun, Guomin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33151 - 33163
  • [27] Discriminative Feature Mining and Alignment for Unsupervised Domain Adaptation
    Xiang, Jing
    Cao, Guitao
    Zhang, Xinyue
    Zhang, Hanxiu
    Wu, Chunwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [28] TRANSFERABLE DISCRIMINATIVE FEATURE MINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Zhao, Lingjun
    Deng, Wanxia
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1259 - 1263
  • [29] Bidirectional feature enhancement transformer for unsupervised domain adaptation
    Hao, Zhiwei
    Wang, Shengsheng
    Long, Sifan
    Li, Yiyang
    Chai, Hao
    VISUAL COMPUTER, 2024, 40 (09): : 6261 - 6277
  • [30] Unsupervised domain adaptation with Joint Adversarial Variational AutoEncoder
    Li, Yuze
    Zhang, Yan
    Yang, Chunling
    KNOWLEDGE-BASED SYSTEMS, 2022, 250