3D Printing of Living Responsive Materials and Devices

被引:319
|
作者
Liu, Xinyue [1 ]
Yuk, Hyunwoo [1 ]
Lin, Shaoting [1 ]
Parada, German Alberto [1 ,2 ]
Tang, Tzu-Chieh [3 ,4 ]
Tham, Eleonore [3 ,5 ]
de la Fuente-Nunez, Cesar [3 ,4 ,6 ]
Lu, Timothy K. [3 ,4 ,6 ]
Zhao, Xuanhe [1 ,7 ]
机构
[1] MIT, Dept Mech Engn, Soft Act Mat Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Elect Res Lab, Synthet Biol Grp, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[6] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[7] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
3D printing; living materials; spatiotemporal patterning; wearable living sensors; SYNTHETIC BIOLOGY; CROSS-LINKING; HYDROGELS; CELLS; LOGIC; DELIVERY; HYBRIDS; CANCER;
D O I
10.1002/adma.201704821
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 mu m) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Metallic materials for 3D printing
    Das, Suman
    Bourell, David L.
    Babu, S. S.
    MRS BULLETIN, 2016, 41 (10) : 729 - 741
  • [22] 3D printing with cellulose materials
    Wang, Qianqian
    Sun, Jianzhong
    Yao, Qian
    Ji, Chencheng
    Liu, Jun
    Zhu, Qianqian
    CELLULOSE, 2018, 25 (08) : 4275 - 4301
  • [23] Recent Patents on 3D Printing Technology in Artificial Bone Printing Devices, Materials, and Related Applications
    Li Z.
    Wang Q.
    Recent Patents on Engineering, 2023, 17 (05) : 24 - 35
  • [24] 3D Printing of Inertial Microfluidic Devices
    Bazaz, Sajad Razavi
    Rouhi, Omid
    Raoufi, Mohammad Amin
    Ejeian, Fatemeh
    Asadnia, Mohsen
    Jin, Dayong
    Warkiani, Majid Ebrahimi
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [25] Layout Guidelines for 3D Printing Devices
    Kowalski, Arkadiusz
    Waszkowski, Robert
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [26] 3D Printing of Inertial Microfluidic Devices
    Sajad Razavi Bazaz
    Omid Rouhi
    Mohammad Amin Raoufi
    Fatemeh Ejeian
    Mohsen Asadnia
    Dayong Jin
    Majid Ebrahimi Warkiani
    Scientific Reports, 10
  • [27] 3D printing of living structural biocomposites
    Hirsch, Matteo
    Lucherini, Lorenzo
    Zhao, Ran
    Saracho, Alexandra Clara
    Amstad, Esther
    MATERIALS TODAY, 2023, 62 : 21 - 32
  • [28] 3D printing of living bacteria electrode
    Freyman, Megan C.
    Kou, Tianyi
    Wang, Shanwen
    Li, Yat
    NANO RESEARCH, 2020, 13 (05) : 1318 - 1323
  • [29] 3D Printing of Flexible Electronic Devices
    Yang, Hui
    Leow, Wan Ru
    Chen, Xiaodong
    SMALL METHODS, 2018, 2 (01):
  • [30] 3D printing of living bacteria electrode
    Megan C. Freyman
    Tianyi Kou
    Shanwen Wang
    Yat Li
    Nano Research, 2020, 13 : 1318 - 1323