Non-negative matrix factorization for polyphonic music transcription

被引:194
作者
Smaragdis, P [1 ]
Brown, JC [1 ]
机构
[1] Mitsubishi Elect Res Lab, Cambridge, MA 02139 USA
来源
2003 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS PROCEEDINGS | 2003年
关键词
D O I
10.1109/aspaa.2003.1285860
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper we present a methodology for analyzing polyphonic musical passages comprised by notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure we can model the audio content of the musical passage by a linear basis transform and use non-negative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge-based, but rather learns notes by observation.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 8 条
[1]  
BARLOW HB, 1959, S MECH THOUGHT PROC
[2]  
HOYER P, 2002, NEURAL NETWORKS SIGN, V12
[3]  
JARRETT K, 1988, ECM RECORDS
[4]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[6]   Conditions for nonnegative independent component analysis [J].
Plumbley, M .
IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (06) :177-180
[7]   Automatic music transcription and audio source separation [J].
Plumbley, MD ;
Abdallah, SA ;
Bello, JP ;
Davies, ME ;
Monti, G ;
Sandler, MB .
CYBERNETICS AND SYSTEMS, 2002, 33 (06) :603-627
[8]  
SMARAGDIS P, 2001, THESIS MIT