omg blueprint for trapped ion quantum computing with metastable states

被引:43
作者
Allcock, D. T. C. [1 ]
Campbell, W. C. [2 ,3 ,4 ]
Chiaverini, J. [5 ,6 ]
Chuang, I. L. [7 ]
Hudson, E. R. [2 ,3 ,4 ]
Moore, I. D. [1 ]
Ransford, A. [2 ,8 ]
Roman, C. [2 ,8 ]
Sage, J. M. [5 ,6 ]
Wineland, D. J. [1 ]
机构
[1] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Challenge Inst Quantum Computat, Los Angeles, CA 90095 USA
[5] MIT, Lincoln Lab, Lexington, MA 02420 USA
[6] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[8] Honeywell Quantum Solut, Broomfield, CO 80021 USA
关键词
All Open Access; Green;
D O I
10.1063/5.0069544
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 30 条
  • [11] Normal modes of trapped ions in the presence of anharmonic trap potentials
    Home, J. P.
    Hanneke, D.
    Jost, J. D.
    Leibfried, D.
    Wineland, D. J.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [12] Quantum Science and Metrology with Mixed-Species Ion Chains
    Home, Jonathon P.
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 62, 2013, 62 : 231 - 277
  • [13] Benchmarking a High-Fidelity Mixed-Species Entangling Gate
    Hughes, A. C.
    Schafer, V. M.
    Thirumalai, K.
    Nadlinger, D. P.
    Woodrow, S. R.
    Lucas, D. M.
    Ballance, C. J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (08)
  • [14] Lange R., 2021, ARXIV210711229
  • [15] Ion-trap quantum logic using long-wavelength radiation
    Mintert, F
    Wunderlich, C
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 257904 - 1
  • [16] Entanglement of single-atom quantum bits at a distance
    Moehring, D. L.
    Maunz, P.
    Olmschenk, S.
    Younge, K. C.
    Matsukevich, D. N.
    Duan, L.-M.
    Monroe, C.
    [J]. NATURE, 2007, 449 (7158) : 68 - U48
  • [17] Realization of a scalable Shor algorithm
    Monz, Thomas
    Nigg, Daniel
    Martinez, Esteban A.
    Brandl, Matthias F.
    Schindler, Philipp
    Rines, Richard
    Wang, Shannon X.
    Chuang, Isaac L.
    Blatt, Rainer
    [J]. SCIENCE, 2016, 351 (6277) : 1068 - 1070
  • [18] Moore I. D., PHOTON SCATTER UNPUB
  • [19] Trapped-ion quantum logic gates based on oscillating magnetic fields
    Ospelkaus, C.
    Langer, C. E.
    Amini, J. M.
    Brown, K. R.
    Leibfried, D.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [20] Errors in trapped-ion quantum gates due to spontaneous photon scattering
    Ozeri, R.
    Itano, W. M.
    Blakestad, R. B.
    Britton, J.
    Chiaverini, J.
    Jost, J. D.
    Langer, C.
    Leibfried, D.
    Reichle, R.
    Seidelin, S.
    Wesenberg, J. H.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (04):