omg blueprint for trapped ion quantum computing with metastable states

被引:43
作者
Allcock, D. T. C. [1 ]
Campbell, W. C. [2 ,3 ,4 ]
Chiaverini, J. [5 ,6 ]
Chuang, I. L. [7 ]
Hudson, E. R. [2 ,3 ,4 ]
Moore, I. D. [1 ]
Ransford, A. [2 ,8 ]
Roman, C. [2 ,8 ]
Sage, J. M. [5 ,6 ]
Wineland, D. J. [1 ]
机构
[1] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Challenge Inst Quantum Computat, Los Angeles, CA 90095 USA
[5] MIT, Lincoln Lab, Lexington, MA 02420 USA
[6] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[8] Honeywell Quantum Solut, Broomfield, CO 80021 USA
关键词
All Open Access; Green;
D O I
10.1063/5.0069544
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 30 条
  • [1] High-fidelity light-shift gate for clock-state qubits
    Baldwin, C. H.
    Bjork, B. J.
    Foss-Feig, M.
    Gaebler, J. P.
    Hayes, D.
    Kokish, M. G.
    Langer, C.
    Sedlacek, J. A.
    Stack, D.
    Vittorini, G.
    [J]. PHYSICAL REVIEW A, 2021, 103 (01)
  • [2] Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic -: art. no. 042302
    Barrett, MD
    DeMarco, B
    Schaetz, T
    Meyer, V
    Leibfried, D
    Britton, J
    Chiaverini, J
    Itano, WM
    Jelenkovic, B
    Jost, JD
    Langer, C
    Rosenband, T
    Wineland, DJ
    [J]. PHYSICAL REVIEW A, 2003, 68 (04):
  • [3] Observation of the hyperfine structure of the 2S1/2-2D5/2 transition in 87Sr+ -: art. no. 013402
    Barwood, GP
    Gao, K
    Gill, P
    Huang, G
    Klein, HA
    [J]. PHYSICAL REVIEW A, 2003, 67 (01): : 5
  • [4] PRECISE DETERMINATION OF BA-135(+) AND BA-137(+) HYPERFINE-STRUCTURE
    BECKER, W
    BLATT, R
    WERTH, G
    [J]. JOURNAL DE PHYSIQUE, 1981, 42 (NC8): : 339 - 346
  • [5] Benhelm J., 2008, PRECISION SPECTROSCO
  • [6] Lifetime calculations in Yb II
    Biemont, E
    Dutrieux, JF
    Martin, I
    Quinet, P
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1998, 31 (15) : 3321 - 3333
  • [7] Dual-species, multi-qubit logic primitives for Ca+/Sr+ trapped-ion crystals
    Bruzewicz, C. D.
    McConnell, R.
    Stuart, J.
    Sage, J. M.
    Chiaverini, J.
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [8] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [9] High-fidelity manipulation of a qubit enabled by a manufactured nucleus
    Christensen, Justin E.
    Hucul, David
    Campbell, Wesley C.
    Hudson, Eric R.
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [10] Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions
    Dzuba, V. A.
    Flambaum, V. V.
    [J]. PHYSICAL REVIEW A, 2016, 93 (05)