Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage

被引:67
作者
Chen, Song [1 ,2 ]
Huang, Shaozhuan [2 ]
Zhang, Yuan-Fang [2 ,3 ]
Fan, Shuang [1 ,2 ]
Yan, Dong [1 ,2 ]
Shang, Yang [2 ]
Pam, Mei Er [2 ]
Ge, Qi [2 ,3 ]
Shi, Yumeng [1 ,4 ]
Yang, Hui Ying [2 ,3 ]
机构
[1] Shenzhen Univ, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Coll Optoelect Engn, Minist Educ, Shenzhen 518060, Peoples R China
[2] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[3] Singapore Univ Technol & Design, Digital Mfg & Design Ctr, Singapore 487372, Singapore
[4] Shenzhen Univ, Coll Optoelect Engn, Engn Technol Res Ctr 2D Mat Informat Funct Device, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron selenide; Stress-release layer; Finite element simulation; In situ X-ray diffraction; Sodium ion batteries; HIGH-RATE CAPABILITY; LITHIUM-ION; CARBON NANOFIBERS; PERFORMANCE; CATHODE; ANODE; NANOPARTICLES; MICROSPHERES; LIFE; NANOSHEETS;
D O I
10.1016/j.nanoen.2019.104389
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Engineering multicomponent composite materials into tailored structure is of vital importance for developing advanced sodium ion batteries (SIBs). However, the mechanical stress intensification originating from severe volume expansion upon sodiation induces anisotropic swelling and anomalous structural changes, thus leading to electrode instability and inferior sodium storage performance. Herein, we propose a novel stress-release strategy by inserting of MoSe2 nanosheets onto the surface of yolk-shell Fe7Se8@C composite to accommodate the volume expansion and stabilize the electrode. Bestowed by the unique superiority, the Fe7Se8@C@MoSe2 composite manifests impressive sodium-storage performance in terms of high specific capacity (473.3 mAh g(-1) at 0.1 A g(-1)), excellent rate capability (274.5 mAh g(-1) at 5.0 A g(-1)) and long-term cycling stability (87.1% capacity retention after 600 cycles at 1.0 A g(-1)). Finite element (FE) simulations confirm that the exterior MoSe2 layer could significantly dissipate the stress caused by the sodiation-induced expansion of Fe7Se8 in the carbon layer. The primary sodium storage mechanisms and structural evolution are further revealed in details by in situ and ex situ investigations. More encouragingly, a practical sodium-ion full cell based on Fe7Se8@C@MoSe2 anode is demonstrated with remarkable performances. This work strengthens the fundamental understanding of mechanical effect for sodium-storage behaviors and sheds light onto designing smart multi-compositional hybrids toward advanced energy storage devices.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Graphene Wrapped FeSe2 Nano-Microspheres with High Pseudocapacitive Contribution for Enhanced Na-Ion Storage [J].
An, Changsheng ;
Yuan, Yifei ;
Zhang, Bao ;
Tang, Linbo ;
Xiao, Bin ;
He, Zhenjiang ;
Zheng, Junchao ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2019, 9 (18)
[2]   Preparation and characterization of Bi2Se3(0001) and of epitaxial FeSe nanocrystals on Bi2Se3(0001) [J].
Cavallin, Alberto ;
Sevriuk, Vasilii ;
Fischer, Kenia Novakoski ;
Manna, Sujit ;
Ouazi, Safia ;
Ellguth, Martin ;
Tusche, Christian ;
Meyerheim, Holger L. ;
Sander, Dirk ;
Kirschner, Juergen .
SURFACE SCIENCE, 2016, 646 :72-82
[3]   Elastic properties of mono- and poly-crystalline PbO-type FeSe1-xTex (x=0-1.0): A first-principles study [J].
Chandra, S. ;
Islam, A. K. M. A. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (22) :2072-2075
[4]   Boosting Sodium Storage of Fe1-xS/MoS2 Composite via Heterointerface Engineering [J].
Chen, Song ;
Huang, Shaozhuan ;
Hu, Junping ;
Fan, Shuang ;
Shang, Yang ;
Pam, Mei Er ;
Li, Xiaoxia ;
Wang, Ye ;
Xu, Tingling ;
Shi, Yumeng ;
Yang, Hui Ying .
NANO-MICRO LETTERS, 2019, 11 (01)
[5]   An all manganese- based oxide nanocrystal cathode and anode for high performance lithium- ion full cells [J].
Chen, Song ;
Shi, Yumeng ;
Wang, Ye ;
Shang, Yang ;
Xia, Wei ;
Yang, Hui Ying .
NANOSCALE ADVANCES, 2019, 1 (05) :1714-1720
[6]   Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode [J].
Chen, Song ;
Chen, Zhuo ;
Xu, Xingyan ;
Cao, Chuanbao ;
Xia, Min ;
Luo, Yunjun .
SMALL, 2018, 14 (12)
[7]   Silicon hollow sphere anode with enhanced cycling stability by a template-free method [J].
Chen, Song ;
Chen, Zhuo ;
Luo, Yunjun ;
Xia, Min ;
Cao, Chuanbao .
NANOTECHNOLOGY, 2017, 28 (16)
[8]   High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries [J].
Chen, Weihua ;
Zhang, Xixue ;
Mi, Liwei ;
Liu, Chuntai ;
Zhang, Jianmin ;
Cui, Shizhong ;
Feng, Xiangming ;
Cao, Yuliang ;
Shen, Changyu .
ADVANCED MATERIALS, 2019, 31 (08)
[9]   A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries [J].
Choi, Jae Hun ;
Park, Seung-Keun ;
Kang, Yun Chan .
SMALL, 2019, 15 (02)
[10]   Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage [J].
Fan, Shuang ;
Huang, Shaozhuan ;
Chen, Yaxin ;
Shang, Yang ;
Wang, Ye ;
Kong, Dezhi ;
Pam, Mei Er ;
Shi, Liluo ;
Lim, Yew Won ;
Shi, Yumeng ;
Yang, Hui Ying .
ENERGY STORAGE MATERIALS, 2019, 23 :17-24