A two-parameter defect-correction method for computation of steady-state viscoelastic fluid flow

被引:21
作者
Ervin, Vincent J. [1 ]
Howell, Jason S. [1 ]
Lee, Hyesuk [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
viscoelastic fluid; defect correction; finite element; discontinuous Galerkin; Weissenberg number;
D O I
10.1016/j.amc.2007.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical simulation of viscoelastic fluid flow becomes more difficult as a physical parameter, the Weissenberg number, increases. Specifically, at a Weissenberg number larger than a critical value, the iterative nonlinear solver fails to converge. In this paper a two-parameter defect-correction method for viscoelastic fluid flow is presented and analyzed. In the defect step the Weissenberg number is artificially reduced to solve a stable nonlinear problem. The approximation is then improved in the correction step using a linearized correction iteration. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:818 / 834
页数:17
相关论文
共 32 条
[21]  
Layton WJ., 1996, VESTNIK MOSK GOS U S, V15, P25
[22]   A multigrid method for viscoelastic fluid flow [J].
Lee, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) :109-129
[23]   Analysis of a defect correction method for viscoelastic fluid flow [J].
Lee, HK .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (7-8) :1213-1229
[24]   APPROXIMATION ERROR IN FINITE-ELEMENT CALCULATION OF VISCOELASTIC FLUID-FLOWS [J].
MENDELSON, MA ;
YEH, PW ;
BROWN, RA ;
ARMSTRONG, RC .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1982, 10 (1-2) :31-54
[25]  
Owens R. G., 2002, Computational rheology
[26]   ON THE CONTINUOUS SQUEEZING FLOW IN A WEDGE [J].
PHANTHIEN, N ;
ZHENG, R .
RHEOLOGICA ACTA, 1991, 30 (05) :491-496
[27]   EXISTENCE OF SLOW STEADY FLOWS OF VISCOELASTIC FLUIDS WITH DIFFERENTIAL CONSTITUTIVE-EQUATIONS [J].
RENARDY, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (09) :449-451
[28]  
Renardy M., 2000, CBMS-NSF MA
[29]   SOLUTION FIELDS OF NON-LINEAR EQUATIONS AND CONTINUATION METHODS [J].
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :221-237
[30]  
Schwab C., 1998, PAND HP FINITE ELEME