A two-parameter defect-correction method for computation of steady-state viscoelastic fluid flow

被引:21
作者
Ervin, Vincent J. [1 ]
Howell, Jason S. [1 ]
Lee, Hyesuk [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
viscoelastic fluid; defect correction; finite element; discontinuous Galerkin; Weissenberg number;
D O I
10.1016/j.amc.2007.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical simulation of viscoelastic fluid flow becomes more difficult as a physical parameter, the Weissenberg number, increases. Specifically, at a Weissenberg number larger than a critical value, the iterative nonlinear solver fails to converge. In this paper a two-parameter defect-correction method for viscoelastic fluid flow is presented and analyzed. In the defect step the Weissenberg number is artificially reduced to solve a stable nonlinear problem. The approximation is then improved in the correction step using a linearized correction iteration. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:818 / 834
页数:17
相关论文
共 32 条
[1]  
ADAMS RA, 2003, SOBOLEV SPACES PURE, V140
[2]  
Allgower E.L., 1990, SPRINGER SERIES COMP, V13
[3]  
[Anonymous], 1978, RECENT ADV INNUMERIC, DOI [DOI 10.1016/B978-0-12-208360-0.50009-7, 10.1016/B978-0-12-208360-0.50009-7]
[4]   DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED CONVECTION-DIFFUSION PROBLEMS [J].
AXELSSON, O ;
LAYTON, W .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04) :423-455
[5]  
Baaijens FPT, 1998, J NON-NEWTON FLUID, V79, P361, DOI 10.1016/S0377-0257(98)00122-0
[6]   FINITE-ELEMENT APPROXIMATION OF VISCOELASTIC FLUID-FLOW - EXISTENCE OF APPROXIMATE SOLUTIONS AND ERROR-BOUNDS .1. DISCONTINUOUS CONSTRAINTS [J].
BARANGER, J ;
SANDRI, D .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :13-27
[7]  
Bohmer K., 1984, DEFECT CORRECTION ME
[8]  
Brenner S. C., 2007, Texts Appl. Math., V15
[9]   A new spectral element method for the reliable computation of viscoelastic flow [J].
Chauvière, C ;
Owens, RG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (31) :3999-4018
[10]  
CHOW TW, 1987, THESIS COLORADO STAT