ContainerGuard: A Real-Time Attack Detection System in Container-Based Big Data Platform

被引:20
|
作者
Wang, Yulong [1 ]
Wang, Qixu [1 ]
Chen, Xingshu [1 ]
Chen, Dajiang [2 ,3 ]
Fang, Xiaojie [4 ]
Yin, Mingyong [5 ]
Zhang, Ning [6 ]
机构
[1] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu 610065, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[4] Harbin Inst Technol, Dept Elect & Informat Engn, Harbin 150001, Peoples R China
[5] China Acad Engn Phys, Inst Comp Applicat, Mianyang 621900, Sichuan, Peoples R China
[6] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
基金
中国国家自然科学基金;
关键词
Containers; Big Data; Process control; Side-channel attacks; Kernel; Security; Hardware; Anomaly detection; big data platform security; container; meltdown and spectre; variational autoencoder (VAE); SIDE-CHANNEL ATTACKS; SPARK;
D O I
10.1109/TII.2020.3047416
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a lightweight, flexible, and high-performance operating system virtualization, containers are used to speed up the big data platform. However, due to the imperfection of the resource isolation mechanism and the property of shared kernel, the meltdown and spectre attacks can lead to information leakage of kernel space and coresident containers. In this article, a noise-resilient and real-time detection system, named ContainerGuard, is proposed to detect meltdown and spectre attacks in the container-based big data platform. ContainerGuard uses a nonintrusive manner to collect lifecycle multivariate time-series performance event data of processes in containers and then uses ensemble of variational autoencoders as generative neural networks to learn the robust representations of normal patterns. Therefore, ContainerGuard meets the urgent need for information protection in the container-based big data platform. Our evaluations using real-world datasets show that ContainerGuard achieves excellent detection performance and only introduces about 4.5% of running performance overhead to the platform.
引用
收藏
页码:3327 / 3336
页数:10
相关论文
共 50 条
  • [21] Architectural Design Of Data Stream-Based Big Data Real-Time Analysis System
    Liu, Qiang
    Lv, Junmin
    Yuan, Xun
    Luo, Renyi
    Lv, Dekui
    PROCEEDINGS OF THE 2017 2ND JOINT INTERNATIONAL INFORMATION TECHNOLOGY, MECHANICAL AND ELECTRONIC ENGINEERING CONFERENCE (JIMEC 2017), 2017, 62 : 153 - 156
  • [22] Railway Big Data Real-time Processing Based on Storm
    Guo, Shihang
    Zhang, Lichen
    PROCEEDINGS OF THE 2016 2ND WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS, 2016, 81 : 536 - 539
  • [23] Open-Source Big Data Platform for Real-Time Geolocation in Smart Cities
    Moreno-Bernal, Pedro
    Alan Cervantes-Salazar, Carlos
    Nesmachnow, Sergio
    Manuel Hurtado-Ramirez, Juan
    Alberto Hernandez-Aguilar, Jose
    SMART CITIES (ICSC-CITIES 2021), 2022, 1555 : 207 - 222
  • [24] Proposed Model for Real-Time Anomaly Detection in Big IoT Sensor Data for Smart City
    Hasani Z.
    Krrabaj S.
    Krasniqi M.
    International Journal of Interactive Mobile Technologies, 2024, 18 (03): : 32 - 44
  • [25] A survey on data stream, big data and real-time
    Gomes E.H.A.
    Plentz P.D.M.
    De Rolt C.R.
    Dantas M.A.R.
    International Journal of Networking and Virtual Organisations, 2019, 20 (02) : 143 - 167
  • [26] Real-time machine learning for early detection of heart disease using big data approach
    Ed-daoudy, Abderrahmane
    Maalmi, Khalil
    2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2019,
  • [27] Big-Data Based Real-Time Interactive Growth Management System in Wireless Communications
    Kim, Jonghun
    Jang, Heetae
    Kim, Jong Tak
    Pan, Hee-Jun
    Park, Roy C.
    WIRELESS PERSONAL COMMUNICATIONS, 2019, 105 (02) : 655 - 671
  • [28] Big-Data Based Real-Time Interactive Growth Management System in Wireless Communications
    Jonghun Kim
    Heetae Jang
    Jong Tak Kim
    Hee-Jun Pan
    Roy C. Park
    Wireless Personal Communications, 2019, 105 : 655 - 671
  • [29] Hadoop Based Real-Time Big Data Architecture for Remote Sensing Earth Observatory System
    Rathore, M. Mazhar
    Ahmad, Awais
    Paul, Anand
    Daniel, Alfred
    2015 6TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2015, : 204 - 210
  • [30] Real-time health level assessment for complex production line system based on big data
    Fan, Wenhui (fanwenhui@tsinghua.edu.cn), 1600, Tsinghua University (54):