Construction of Orthogonal Multiwavelet Bases

被引:1
作者
Pleshcheva, E. A. [1 ]
Chernykh, N. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg 620000, Russia
基金
俄罗斯基础研究基金会;
关键词
multiwavelet; multiresolution analysis; multiscaling function; mask; matrix mask;
D O I
10.1134/S0081543815020169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a method for constructing orthogonal multiwavelet bases of the space L-2(R) for any known multiscaling functions that generate a multiresolution analysis of dimension greater than 1.
引用
收藏
页码:S162 / S172
页数:11
相关论文
共 7 条
[1]  
Keinert F., 2003, STUDIES ADV MATH, V42
[2]   An algorithm for matrix extension and wavelet construction [J].
Lawton, W ;
Lee, SL ;
Shen, ZW .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :723-737
[3]  
NOVIKOV IY, 2005, WAVELET THEORY
[4]   On construction of multivariate wavelet frames [J].
Skopina, M. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (01) :55-72
[5]   SHORT WAVELETS AND MATRIX DILATION EQUATIONS [J].
STRANG, G ;
STRELA, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (01) :108-115
[6]   The application of multiwavelet filterbanks to image processing [J].
Strela, V ;
Heller, PN ;
Strang, G ;
Topiwala, P ;
Heil, C .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (04) :548-563
[7]   Multiwavelets: Regularity, orthogonality, and symmetry via two-scale similarity transform [J].
Strela, V .
STUDIES IN APPLIED MATHEMATICS, 1997, 98 (04) :335-354