Mobile 3D Object Detection in Clutter

被引:0
|
作者
Meger, David [1 ]
Little, James J. [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V5Z 1M9, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for multi-view 3D robotic object recognition targeted for cluttered indoor scenes. We explicitly model occlusions that cause failures in visual detectors by learning a generative appearance-occlusion model from a training set containing annotated 3D objects, images and point clouds. A Bayesian 3D object likelihood incorporates visual information from many views as well as geometric priors for object size and position. An iterative, sampling-based inference technique determines object locations based on the model. We also contribute a novel robot-collected data set with images and point clouds from multiple views of 60 scenes, with over 600 manually annotated 3D objects accounting for over ten thousand bounding boxes. This data has been released to the community. Our results show that our system is able to robustly recognize objects in realistic scenes, significantly improving recognition performance in clutter.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 3D Object Class Detection in the Wild
    Pepik, Bojan
    Stark, Michael
    Gehler, Peter
    Ritschel, Tobias
    Schiele, Bernt
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [22] Lifting Object Detection Datasets into 3D
    Carreira, Joao
    Vicente, Sara
    Agapito, Lourdes
    Batista, Jorge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1342 - 1355
  • [23] A Heterogeneous Approach for 3D Object Detection
    Lü Z.
    Yao Z.
    Jia Y.
    Bao Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2748 - 2759
  • [24] Super Sparse 3D Object Detection
    Fan, Lue
    Yang, Yuxue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12490 - 12505
  • [25] Fully Sparse 3D Object Detection
    Fan, Lue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [26] 3D Reconstruction and Object Detection for HoloLens
    Wu, Zequn
    Zhao, Tianhao
    Nguyen, Chuong
    2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [27] 3D Object Detection with Multiple Kinects
    Susanto, Wandi
    Rohrbach, Marcus
    Schiele, Bernt
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7584 : 93 - 102
  • [28] Semi-Supervised Online Continual Learning for 3D Object Detection in Mobile Robotics
    Liu, Binhong
    Yao, Dexin
    Yang, Rui
    Yan, Zhi
    Yang, Tao
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (04)
  • [29] 3D object watermarking by a 3D hidden object
    Kishk, S
    Javidi, B
    OPTICS EXPRESS, 2003, 11 (08): : 874 - 888
  • [30] Mobile Object Detection Using 2D and 3D Basic Geometric Figures in Colour and Grayscale
    Castellanos, Ari Ernesto Ortiz
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229