Finite element approximation of the Cahn-Hilliard equation on surfaces

被引:47
作者
Du, Qiang [2 ]
Ju, Lili [1 ]
Tian, Li [2 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Cahn-Hilliard equation on surface; Finite element approximation; Phase transition; Fully discrete approximation; Pointwise bound; Convergence analysis; Error estimate; CENTROIDAL VORONOI TESSELLATIONS; DIFFERENCE SCHEME; PHASE-SEPARATION; STABILITY; MODELS; ENERGY; PDES;
D O I
10.1016/j.cma.2011.04.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the phase separation on general surfaces by solving the nonlinear Cahn-Hilliard equation using a finite element method. A fully discrete approximation scheme is introduced, and we establish a priori estimates for the discrete solution that does not rely on any knowledge the exact solution beyond the initial time. This in turn leads to convergence and optimal error estimates of the discretization scheme. Numerical examples are also provided to substantiate the theoretical results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2458 / 2470
页数:13
相关论文
共 47 条
  • [1] [Anonymous], 2000, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities
  • [2] [Anonymous], 1989, Internat. Ser. Numer. Math, DOI DOI 10.1007/978-3-0348-9148-6_3
  • [3] AN ERROR BOUND FOR THE FINITE-ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH LOGARITHMIC FREE-ENERGY
    BARRETT, JW
    BLOWEY, JF
    [J]. NUMERISCHE MATHEMATIK, 1995, 72 (01) : 1 - 20
  • [4] On fully practical finite element approximations of degenerate Cahn-Hilliard systems
    Barrett, JW
    Blowey, JF
    Garcke, H
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 713 - 748
  • [5] Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension
    Baumgart, T
    Hess, ST
    Webb, WW
    [J]. NATURE, 2003, 425 (6960) : 821 - 824
  • [6] Grain boundary scars and spherical crystallography
    Bausch, AR
    Bowick, MJ
    Cacciuto, A
    Dinsmore, AD
    Hsu, MF
    Nelson, DR
    Nikolaides, MG
    Travesset, A
    Weitz, DA
    [J]. SCIENCE, 2003, 299 (5613) : 1716 - 1718
  • [7] STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS
    CAGINALP, G
    [J]. PHYSICAL REVIEW A, 1989, 39 (11): : 5887 - 5896
  • [8] ON SPINODAL DECOMPOSITION
    CAHN, JW
    [J]. ACTA METALLURGICA, 1961, 9 (09): : 795 - 801
  • [9] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [10] Applications of semi-implicit Fourier-spectral method to phase field equations
    Chen, LQ
    Shen, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) : 147 - 158