A weak Asplund space whose dual is not weak* fragmentable

被引:12
作者
Kenderov, PS
Moors, WB
Sciffer, S
机构
[1] Bulgarian Acad Sci, Inst Math, Sofia 1113, Bulgaria
[2] Univ Waikato, Dept Math, Hamilton, New Zealand
[3] Univ Newcastle, Dept Math, Newcastle, NSW 2308, Australia
关键词
Stegall's class; fragmentability; weak Asplund space; double arrow space; Baire space; minimal usco;
D O I
10.1090/S0002-9939-01-06002-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the assumption that there exists in the unit interval [0, 1] an uncountable set A with the property that every continuous mapping from a Baire metric space B into A is constant on some non-empty open subset of B, we construct a Banach space X such that (X*; weak*) belongs to Stegall's class but (X*, weak*) is not fragmentable.
引用
收藏
页码:3741 / 3747
页数:7
相关论文
共 8 条
[1]  
Bachman G., 1966, Functional analysis
[2]  
FABIAN M, 1997, GATEAUX DIFFERENTIAB
[3]   SOLUTION OF KURATOWSKI PROBLEM ON FUNCTION HAVING THE BAIRE PROPERTY .1. [J].
FRANKIEWICZ, R ;
KUNEN, K .
FUNDAMENTA MATHEMATICAE, 1987, 128 (03) :171-180
[4]   Stegall compact spaces which are not fragmentable [J].
Kalenda, O .
TOPOLOGY AND ITS APPLICATIONS, 1999, 96 (02) :121-132
[5]   A GENERIC FACTORIZATION THEOREM [J].
KENDEROV, PS ;
ORIHUELA, J .
MATHEMATIKA, 1995, 42 (83) :56-66
[6]  
MOORS WB, IN PRESS TOPOLOGY AP
[7]   MAPPINGS OF BAIRE SPACES INTO FUNCTION-SPACES AND KADEC RENORMING [J].
NAMIOKA, I ;
POL, R .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 78 (01) :1-20
[8]  
STEGALL C, 1983, VORLESUNGEN FACHBERE, V10, P63