Stand-alone vacuum cell for compact ultracold quantum technologies

被引:23
作者
Burrow, Oliver S. [1 ]
Osborn, Paul F. [2 ]
Boughton, Edward [2 ]
Mirando, Francesco [3 ]
Burt, David P. [3 ]
Griffin, Paul F. [1 ]
Arnold, Aidan S. [1 ]
Riis, Erling [1 ]
机构
[1] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland
[2] TMD Technol Ltd, Swallowfield Way, Hayes UB3 1DQ, England
[3] Kelvin Nanotechnol Ltd, 70 Oakfield Ave, Glasgow G12 8LS, Lanark, Scotland
基金
“创新英国”项目; 英国工程与自然科学研究理事会;
关键词
LASER SYSTEM; SINGLE-LASER; DIODE-LASER; ATOMS; RUBIDIUM; BEAM; CHIP;
D O I
10.1063/5.0061010
中图分类号
O59 [应用物理学];
学科分类号
摘要
Compact vacuum systems are key enabling components for cold atom technologies, facilitating extremely accurate sensing applications. There has been important progress toward a truly portable compact vacuum system; however, size, weight, and power consumption can be prohibitively large, optical access may be limited, and active pumping is often required. Here, we present a centiliter-scale ceramic vacuum chamber with He-impermeable viewports and an integrated diffractive optic, enabling robust laser cooling with light from a single polarization-maintaining fiber. A cold atom demonstrator based on the vacuum cell delivers 10(7) laser-cooled Rb-87 atoms per second, using minimal electrical power. With continuous Rb gas emission, active pumping yields a 10 - 7 mbar equilibrium pressure, and passive pumping stabilizes to 3 x 10 - 6 mbar with a 17 day time constant. A vacuum cell, with no Rb dispensing and only passive pumping, has currently kept a similar pressure for more than 500 days. The passive-pumping vacuum lifetime is several years, which is estimated from short-term He throughput with many foreseeable improvements. This technology enables wide-ranging mobilization of ultracold quantum metrology.
引用
收藏
页数:6
相关论文
共 60 条
  • [11] Efficient reversible entanglement transfer between light and quantum memories
    Cao, Mingtao
    Hoffet, Felix
    Qiu, Shuwei
    Sheremet, Alexandra S.
    Laurat, Julien
    [J]. OPTICA, 2020, 7 (10): : 1440 - 1444
  • [12] Single-Source Multiaxis Cold-Atom Interferometer in a Centimeter-Scale Cell
    Chen, Yun-Jhih
    Hansen, Azure
    Hoth, Gregory W.
    Ivanov, Eugene
    Pelle, Bruno
    Kitching, John
    Donley, Elizabeth A.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 12 (01)
  • [13] Design and fabrication of diffractive atom chips for laser cooling and trapping
    Cotter, J. P.
    McGilligan, J. P.
    Griffin, P. F.
    Rabey, I. M.
    Docherty, K.
    Riis, E.
    Arnold, A. S.
    Hinds, E. A.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (06):
  • [14] Low helium permeation cells for atomic microsystems technology
    Dellis, Argyrios T.
    Shah, Vishal
    Donley, Elizabeth A.
    Knappe, Svenja
    Kitching, John
    [J]. OPTICS LETTERS, 2016, 41 (12) : 2775 - 2778
  • [15] Sub-megahertz linewidth 780.24 nm distributed feedback laser for 87Rb applications
    Di Gaetano, E.
    Watson, S.
    McBrearty, E.
    Sorel, M.
    Paul, D. J.
    [J]. OPTICS LETTERS, 2020, 45 (13) : 3529 - 3532
  • [16] Continuous Cold-Atom Inertial Sensor with 1 nrad/ sec Rotation Stability
    Dutta, I.
    Savoie, D.
    Fang, B.
    Venon, B.
    Alzar, C. L. Garrido
    Geiger, R.
    Landragin, A.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (18)
  • [17] A cold-atom beam clock based on coherent population trapping
    Elgin, John D.
    Heavner, Thomas P.
    Kitching, John
    Donley, Elizabeth A.
    Denney, Jayson
    Salim, Evan A.
    [J]. APPLIED PHYSICS LETTERS, 2019, 115 (03)
  • [18] Cold-atom clock based on a diffractive optic
    Elvin, R.
    Hoth, G. W.
    Wright, M.
    Lewis, B.
    McGilligan, J. P.
    Arnold, A. S.
    Griffin, P. F.
    Riis, E.
    [J]. OPTICS EXPRESS, 2019, 27 (26) : 38359 - 38366
  • [19] HORACE: A compact cold atom clock for Galileo
    Esnault, F. X.
    Rossetto, N.
    Holleville, D.
    Delporte, J.
    Dimarcq, N.
    [J]. ADVANCES IN SPACE RESEARCH, 2011, 47 (05) : 854 - 858
  • [20] Geodesy and metrology with a transportable optical clock
    Grotti, Jacopo
    Koller, Silvio
    Vogt, Stefan
    Haefner, Sebastian
    Sterr, Uwe
    Lisdat, Christian
    Denker, Heiner
    Voigt, Christian
    Timmen, Ludger
    Rolland, Antoine
    Baynes, Fred N.
    Margolis, Helen S.
    Zampaolo, Michel
    Thoumany, Pierre
    Pizzocaro, Marco
    Rauf, Benjamin
    Bregolin, Filippo
    Tampellini, Anna
    Barbieri, Piero
    Zucco, Massimo
    Costanzo, Giovanni A.
    Clivati, Cecilia
    Levi, Filippo
    Calonico, Davide
    [J]. NATURE PHYSICS, 2018, 14 (05) : 437 - +