Composition dependence of methanol oxidation activity in nickel-cobalt hydroxides and oxides: an optimization toward highly active electrodes

被引:77
作者
Sun, Shengnan [1 ]
Xu, Zhichuan J. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU, ERI N, Interdisciplinary Grad Sch, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Electro-deposition; Ni-Co hydroxides; oxides; methanol oxidation; ENHANCED ELECTROCATALYTIC ACTIVITY; LAYERED DOUBLE HYDROXIDES; OXYGEN EVOLUTION REACTION; CATALYTIC OXIDATION; ASSISTED SYNTHESIS; DIRECT GROWTH; ELECTROOXIDATION; NICO2O4; NANOPARTICLES; BEHAVIOR;
D O I
10.1016/j.electacta.2015.03.008
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Non-precious metal electrodes, Ni and Co hydroxides and oxides, have been recently found active towards electro-oxidation of methanol in alkaline. In this article, we present a first and complete study on composition dependence of Ni-Co hydroxides and oxides for methanol electro-oxidation. Ni-Co hydroxide electrodes were prepared by co-electrodeposition on stainless steel mesh (SSM). The atomic ratio of Ni/ Ni + Co in Ni-Co hydroxides was controlled by adjusting the ratio of precursor concentration. Ni-Co oxide electrodes were further obtained by annealing the Ni-Co hydroxides. The morphology factors of Ni-Co hydroxides and oxides were revealed by measuring double layer capacitance using cyclic voltammetry (CV). Methanol oxidation reaction (MOR) performance of these Ni-Co hydroxides and oxide electrodes was investigated by CV, and electrochemical impedance spectroscopy (EIS) techniques at room temperature (RT, similar to 25 degrees C). It is found that the MOR performance of Ni-Co hydroxides increased with the increase of Ni content, while the performance of Ni-Co oxide electrodes presented a volcano plot. The highest MOR performance, the smallest charge transfer resistance and Tafel slope were found at the atomic composition of 46% Ni. Such an enhancement probably was due to the synergistic effect of coexisting Ni and Co in the spinel structure. In contrast, the electrode with the mixture of Ni oxide and Co oxide was unable to reach such a high activity. The function of Ni in Ni-Co hydroxides and oxides was attributed to facilitating the methanol oxidation, and in low potential it presented high absorption of intermediate products. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 43 条
[1]   Electrocatalytic oxidation of methanol on the nickel-cobalt modified glassy carbon electrode in alkaline medium [J].
Asgari, Mehdi ;
Maragheh, Mohammad Ghannadi ;
Davarkhah, Reza ;
Lohrasbi, Elaheh ;
Golikand, Ahmad Nozad .
ELECTROCHIMICA ACTA, 2012, 59 :284-289
[2]   Hydrothermal Synthesis of Binary Ni-Co Hydroxides and Carbonate Hydroxides as Pseudosupercapacitors [J].
Bastakoti, Bishnu Prasad ;
Kamachi, Yuichiro ;
Huang, Hou-Sheng ;
Chen, Lin-Chi ;
Wu, Kevin C-W ;
Yamauchi, Yusuke .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (01) :39-43
[3]   Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials [J].
Bastakoti, Bishnu Prasad ;
Huang, Hou-Sheng ;
Chen, Lin-Chi ;
Wu, Kevin C. -W. ;
Yamauchi, Yusuke .
CHEMICAL COMMUNICATIONS, 2012, 48 (73) :9150-9152
[4]   Nanostructured α- and β-cobalt hydroxide thin films [J].
Brownson, Jeffrey R. S. ;
Levy-Clement, Claude .
ELECTROCHIMICA ACTA, 2009, 54 (26) :6637-6644
[5]   Catalytic behavior of Co3O4 in electroreduction of H2O2 [J].
Cao, Dianxue ;
Chao, Jundang ;
Sun, Limei ;
Wang, Guiling .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :87-91
[6]   Determination of the morphology factor of oxide layers [J].
Da Silva, LM ;
De Faria, LA ;
Boodts, JFC .
ELECTROCHIMICA ACTA, 2001, 47 (03) :395-403
[7]   Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode [J].
Danaee, I. ;
Jafarian, M. ;
Forouzandeh, F. ;
Gobal, F. ;
Mahjani, M. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :859-869
[8]   Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation [J].
Das, Ashok Kumar ;
Layek, Rama K. ;
Kim, Nam Hoon ;
Jung, Daeseung ;
Lee, Joong Hee .
NANOSCALE, 2014, 6 (18) :10657-10665
[9]   Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (12) :3207-3215
[10]   Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium [J].
El-Shafei, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 471 (02) :89-95