Adjusted functional boxplots for spatio-temporal data visualization and outlier detection

被引:67
作者
Sun, Ying [2 ]
Genton, Marc G. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Stat & Appl Math Sci Inst, Res Triangle Pk, NC 27709 USA
基金
美国国家科学基金会;
关键词
functional data; GCM data; outlier detection; precipitation data; robust covariance; spatio-temporal data; DEPTH;
D O I
10.1002/env.1136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article proposes a simulation-based method to adjust functional boxplots for correlations when visualizing functional and spatio-temporal data, as well as detecting outliers. We start by investigating the relationship between the spatio-temporal dependence and the 1.5 times the 50% central region empirical outlier detection rule. Then, we propose to simulate observations without outliers on the basis of a robust estimator of the covariance function of the data. We select the constant factor in the functional boxplot to control the probability of correctly detecting no outliers. Finally, we apply the selected factor to the functional boxplot of the original data. As applications, the factor selection procedure and the adjusted functional boxplots are demonstrated on sea surface temperatures, spatio-temporal precipitation and general circulation model (GCM) data. The outlier detection performance is also compared before and after the factor adjustment. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:54 / 64
页数:11
相关论文
共 24 条
  • [11] Highly robust variogram estimation
    Genton, MG
    [J]. MATHEMATICAL GEOLOGY, 1998, 30 (02): : 213 - 221
  • [12] Gneiting T, 2007, MONOGR STAT APPL PRO, V107, P151
  • [13] High-breakdown robust multivariate methods
    Hubert, Mia
    Rousseeuw, Peter J.
    Van Aelst, Stefan
    [J]. STATISTICAL SCIENCE, 2008, 23 (01) : 92 - 119
  • [14] Rainbow Plots, Bagplots, and Boxplots for Functional Data
    Hyndman, Rob J.
    Shang, Han Lin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 29 - 45
  • [15] Liu RY, 1999, ANN STAT, V27, P783
  • [16] On the Concept of Depth for Functional Data
    Lopez-Pintado, Sara
    Romo, Juan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 718 - 734
  • [17] Highly robust estimation of dispersion matrices
    Ma, YY
    Genton, MG
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 78 (01) : 11 - 36
  • [18] Maronna R.A., 2002, TECHNOMETRICS, V50, P295
  • [19] [Nakicenovic N. Intergovernmental Panel on Climate Change (IPCC) Intergovernmental Panel on Climate Change (IPCC)], 2000, SPECIAL REPORT WORKI, P612
  • [20] Ramsay J., 2005, FUNCTIONAL DATA ANAL, VSecond