Adjusted functional boxplots for spatio-temporal data visualization and outlier detection

被引:67
作者
Sun, Ying [2 ]
Genton, Marc G. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Stat & Appl Math Sci Inst, Res Triangle Pk, NC 27709 USA
基金
美国国家科学基金会;
关键词
functional data; GCM data; outlier detection; precipitation data; robust covariance; spatio-temporal data; DEPTH;
D O I
10.1002/env.1136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article proposes a simulation-based method to adjust functional boxplots for correlations when visualizing functional and spatio-temporal data, as well as detecting outliers. We start by investigating the relationship between the spatio-temporal dependence and the 1.5 times the 50% central region empirical outlier detection rule. Then, we propose to simulate observations without outliers on the basis of a robust estimator of the covariance function of the data. We select the constant factor in the functional boxplot to control the probability of correctly detecting no outliers. Finally, we apply the selected factor to the functional boxplot of the original data. As applications, the factor selection procedure and the adjusted functional boxplots are demonstrated on sea surface temperatures, spatio-temporal precipitation and general circulation model (GCM) data. The outlier detection performance is also compared before and after the factor adjustment. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:54 / 64
页数:11
相关论文
共 24 条
  • [1] Climate engineering through artificial enhancement of natural forcings: Magnitudes and implied consequences
    Ammann, Caspar M.
    Washington, Warren M.
    Meehl, Gerald A.
    Buja, Lawrence
    Teng, Haiyan
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [2] [Anonymous], EXPLANATORY DATA ANA
  • [3] [Anonymous], 2000, Journal of Time Series Analysis, DOI DOI 10.1111/1467-9892.00203
  • [4] Becker C, 1999, J AM STAT ASSOC, V94, P947
  • [5] The largest nonidentifiable outlier: a comparison of multivariate simultaneous outlier identification rules
    Becker, C
    Gather, U
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (01) : 119 - 127
  • [6] The Community Climate System Model version 3 (CCSM3)
    Collins, William D.
    Bitz, Cecilia M.
    Blackmon, Maurice L.
    Bonan, Gordon B.
    Bretherton, Christopher S.
    Carton, James A.
    Chang, Ping
    Doney, Scott C.
    Hack, James J.
    Henderson, Thomas B.
    Kiehl, Jeffrey T.
    Large, William G.
    McKenna, Daniel S.
    Santer, Benjamin D.
    Smith, Richard D.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (11) : 2122 - 2143
  • [7] Cressie N., 2011, WILEY SERIES PROBABI
  • [8] Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels
    Febrero, Manuel
    Galeano, Pedro
    Gonzalez-Manteiga, Wenceslao
    [J]. ENVIRONMETRICS, 2008, 19 (04) : 331 - 345
  • [9] A functional analysis of NOx levels: location and scale estimation and outlier detection
    Febrero, Manuel
    Galeano, Pedro
    Gonzalez-Manteiga, Wenceslao
    [J]. COMPUTATIONAL STATISTICS, 2007, 22 (03) : 411 - 427
  • [10] Ferraty F., 2006, SPR S STAT