Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)

被引:112
作者
Li, Xia [1 ]
Shen, Xi [1 ]
Zhou, Yongxia [1 ]
Wang, Xiuhui [1 ]
Li, Tie-Qiang [1 ,2 ,3 ]
机构
[1] China Jiliang Univ, Coll Informat Engn, Hangzhou, Peoples R China
[2] Karolinska Inst, Dept Clin Sci, Intervent & Technol, Stockholm, Sweden
[3] Karolinska Univ Hosp, Dept Med Radiat & Nucl Med, Stockholm, Sweden
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
D O I
10.1371/journal.pone.0232127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we proposed a novel convolutional neural network (CNN) architecture for classification of benign and malignant breast cancer (BC) in histological images. To improve the delivery and use of feature information, we chose the DenseNet as the basic building block and interleaved it with the squeeze-and-excitation (SENet) module. We conducted extensive experiments with the proposed framework by using the public domain BreakHis dataset and demonstrated that the proposed framework can produce significantly improved accuracy in BC classification, compared with the state-of-the-art CNN methods reported in the literature.
引用
收藏
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 2014, Comput. Sci.
[2]  
[Anonymous], 3D DENSELY CONNECTED
[3]  
[Anonymous], PROC CVPR IEEE
[4]  
[Anonymous], ICML
[5]  
[Anonymous], 2011, P 14 INT C ARTIFICIA
[6]  
[Anonymous], BIOMED RES INT
[7]  
[Anonymous], ANN REP NAT 2018 NAT
[8]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[9]  
Bayramoglu N, 2016, INT C PATT RECOG, P2440, DOI 10.1109/ICPR.2016.7900002
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848