Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values

被引:13
作者
Fan, Chanyuan [1 ]
Sun, Kailun [2 ,3 ]
Min, Xiangde [1 ]
Cai, Wei [1 ]
Lv, Wenzhi [4 ]
Ma, Xiaoling [1 ]
Li, Yan [1 ]
Chen, Chong [1 ]
Zhao, Peijun [1 ]
Qiao, Jinhan [1 ]
Lu, Jianyao [1 ]
Guo, Yihao [5 ]
Xia, Liming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Dept Radiol, Tongji Med Coll, 1095 Jiefang Rd, Wuhan 430030, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Natl Hlth Commiss, Inst Organ Transplantat, Tongji Hosp,Key Lab Organ Transplantat,Minist Edu, Wuhan 430030, Hubei, Peoples R China
[3] Chinese Acad Med Sci, Wuhan 430030, Hubei, Peoples R China
[4] Julei Technol Co, Dept Artificial Intelligence, Wuhan 430030, Hubei, Peoples R China
[5] Siemens Healthcare Ltd, MR Collaborat, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion-weighted imaging; Apparent diffusion coefficient; Testicular disease; Radiomics analysis; SCROTUM; CANCER; MRI; RECOMMENDATIONS;
D O I
10.1016/j.ejrad.2022.110158
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a machine-learning-based radiomics signature of ADC for discriminating between benign and malignant testicular masses and compare its classification performance with that of minimum and mean ADC. Methods: A total of ninety-seven patients with 101 histopathologically confirmed testicular masses (70 malignancies, 31 benignities) were evaluated in this retrospective study. Eight hundred fifty-one radiomics features were extracted from the preoperative ADC map of each lesion. The mean and minimum ADC values are part of the radiomics features. Thirty lesions were randomly selected to estimate the reliability of the features. The redundant features were eliminated using univariate analysis (independent t test and Mann-Whitney U test, where appropriate) and Spearman's rank correlation. The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection and radiomics signature generation. The classification performance of the radiomics signature and minimum and mean ADC values were evaluated by receiver operating characteristic (ROC) curve analysis and compared by DeLong's test. Results: The whole lesion-based mean ADC showed no difference between benign and malignant testicular masses (P = 0.070, training cohort; P = 0.418, validation cohort). Compared with the minimum ADC, the ADC-based radiomics signature yielded a higher area under the curve (AUC) in both the training (AUC: 0.904, 95% confidence interval [CI]: 0.832-0.975) and validation cohorts (AUC: 0.868, 95% CI: 0.728-1.00). Conclusions: Conventional mean ADC values are not always helpful in discriminating between testicular benignities and malignancies. The minimum ADC and radiomics signature might be better alternatives, with the radiomics signature performing better than the minimum ADC.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Guidelines on Testicular Cancer: 2015 Update [J].
Albers, Peter ;
Albrecht, Walter ;
Algaba, Ferran ;
Bokemeyer, Carsten ;
Cohn-Cedermark, Gabriella ;
Fizazi, Karim ;
Horwich, Alan ;
Laguna, Maria Pilar ;
Nicolai, Nicola ;
Oldenburg, Jan .
EUROPEAN UROLOGY, 2015, 68 (06) :1054-1068
[2]   Advantage of Adding Diffusion Weighted Imaging to Routine MRI Examinations in the Diagnostics of Scrotal Lesions [J].
Algebally, Ahmed Mohamed ;
Tantawy, Hazim Ibrahim ;
Yousef, Reda Ramadan Hussein ;
Szmigielski, Wojciech ;
Darweesh, Adham .
POLISH JOURNAL OF RADIOLOGY, 2015, 80 :442-449
[3]  
Amin MB., 2017, Ajcc Cancer Staging Manual, V8th ed
[4]   Evaluating Tumor-Infiltrating Lymphocytes in Breast Cancer Using Preoperative MRI-Based Radiomics [J].
Bian, Tiantian ;
Wu, Zengjie ;
Lin, Qing ;
Mao, Yan ;
Wang, Haibo ;
Chen, Jingjing ;
Chen, Qianqian ;
Fu, Guangming ;
Cui, Chunxiao ;
Su, Xiaohui .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :772-784
[5]   Value of frozen section analysis with suspected testicular malignancy [J].
Connolly, SS ;
D'Arcy, FT ;
Bredin, HC ;
Callaghan, J ;
Corcoran, MO .
UROLOGY, 2006, 67 (01) :162-165
[6]   Prostate Cancer Aggressiveness: Assessment with Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient [J].
Donati, Olivio F. ;
Mazaheri, Yousef ;
Afaq, Asim ;
Vargas, Hebert A. ;
Zheng, Junting ;
Moskowitz, Chaya S. ;
Hricak, Hedvig ;
Akin, Oguz .
RADIOLOGY, 2014, 271 (01) :143-152
[7]   Discrimination between benign and malignant testicular lesions using volumetric apparent diffusion coefficient histogram analysis [J].
Fan, Chanyuan ;
Min, Xiangde ;
Feng, Zhaoyan ;
Cai, Wei ;
Li, Basen ;
Zhang, Peipei ;
You, Huijuan ;
Xie, Jinke ;
Wang, Liang .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 126
[8]   Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features [J].
Giannini, V. ;
Mazzetti, S. ;
Bertotto, I. ;
Chiarenza, C. ;
Cauda, S. ;
Delmastro, E. ;
Bracco, C. ;
Di Dia, A. ;
Leone, F. ;
Medico, E. ;
Pisacane, A. ;
Ribero, D. ;
Stasi, M. ;
Regge, D. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (04) :878-888
[9]   Testicular Cancer, Version 2.2020 [J].
Gilligan, Timothy ;
Lin, Daniel W. ;
Aggarwal, Rahul ;
Chism, David ;
Cost, Nicholas ;
Derweesh, Ithaar H. ;
Emamekhoo, Hamid ;
Feldman, Darren R. ;
Geynisman, Daniel M. ;
Hancock, Steven L. ;
LaGrange, Chad ;
Levine, Ellis G. ;
Longo, Thomas ;
Lowrance, Will ;
McGregor, Bradley ;
Monk, Paul ;
Picus, Joel ;
Pierorazio, Phillip ;
Rais-Bahrami, Soroush ;
Saylor, Philip ;
Sircar, Kanishka ;
Smith, David C. ;
Tzou, Katherine ;
Vaena, Daniel ;
Vaughn, David ;
Yamoah, Kosj ;
Yamzon, Jonathan ;
Johnson-Chilla, Alyse ;
Keller, Jennifer ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (12) :1529-1554
[10]   European Association of Urology Guidelines on Testis Cancer: Important Take Home Messages [J].
Heidenreich, Axel ;
Paffenholz, Pia ;
Nestler, Tim ;
Pfister, David .
EUROPEAN UROLOGY FOCUS, 2019, 5 (05) :742-744