Conformal invariance in percolation, self-avoiding walks, and related problems

被引:8
作者
Cardy, J
机构
[1] Theoret Phys, Oxford OX1 3NP, England
[2] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / Suppl 1期
关键词
D O I
10.1007/s00023-003-0928-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas mappings, and stochastic Loewner evolution.
引用
收藏
页码:S371 / S384
页数:14
相关论文
共 20 条
[1]  
BAUER M, ARXIVHEPTH0210015
[2]  
BAUER M, ARXIVMATHPH0206028
[3]   INFINITE CONFORMAL SYMMETRY OF CRITICAL FLUCTUATIONS IN 2 DIMENSIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :763-774
[4]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[5]  
CARDY JL, IN PRESS J STAT PHYS
[6]   EXPONENTS FOR EXCLUDED VOLUME PROBLEM AS DERIVED BY WILSON METHOD [J].
DEGENNES, PG .
PHYSICS LETTERS A, 1972, A 38 (05) :339-&
[7]   EXTENDED SCALING RELATIONS FOR THE MAGNETIC CRITICAL EXPONENTS OF THE POTTS-MODEL [J].
DENNIJS, M .
PHYSICAL REVIEW B, 1983, 27 (03) :1674-1679
[8]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[9]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[10]   SCALING RELATIONS FOR 2D-PERCOLATION [J].
KESTEN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (01) :109-156