The stability and extended well-posedness of the solution sets for set optimization problems via the Painleve-Kuratowski convergence

被引:23
作者
Han, Yu [1 ]
Zhang, Kai [1 ]
Huang, Nan-jing [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Set optimization problem; Painleve-Kuratowski convergence; Stability; Extended well-posedness; PAINLEV; -KURATOWSKI CONVERGENCES; POINTWISE;
D O I
10.1007/s00186-019-00695-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we obtain the Painleve-Kuratowski upper convergence and the Painleve-Kuratowski lower convergence of the approximate solution sets for set optimization problems with the continuity and convexity of objective mappings. Moreover, we discuss the extended well-posedness and the weak extended well-posedness for set optimization problems under some mild conditions. We also give some examples to illustrate our main results.
引用
收藏
页码:175 / 196
页数:22
相关论文
共 33 条
[1]   Set-relations and optimality conditions in set-valued maps [J].
Alonso, M ;
Rodríguez-Marín, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (08) :1167-1179
[2]  
[Anonymous], 2004, VARIATIONAL ANAL
[3]  
Aubin JP., 1984, Applied nonlinear analysis
[4]   Extended Well-Posedness of Quasiconvex Vector Optimization Problems [J].
Crespi, G. P. ;
Papalia, M. ;
Rocca, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) :285-297
[5]   Pointwise and global well-posedness in set optimization: a direct approach [J].
Crespi, Giovanni P. ;
Dhingra, Mansi ;
Lalitha, C. S. .
ANNALS OF OPERATIONS RESEARCH, 2018, 269 (1-2) :149-166
[6]   Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization [J].
Crespi, Giovanni P. ;
Kuroiwa, Daishi ;
Rocca, Matteo .
ANNALS OF OPERATIONS RESEARCH, 2017, 251 (1-2) :89-104
[7]   CONVEXITY AND GLOBAL WELL-POSEDNESS IN SET-OPTIMIZATION [J].
Crespi, Giovanni P. ;
Kuroiwa, Daishi ;
Rocca, Matteo .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (06) :1897-1908
[8]   Painleve-Kuratowski Convergences of the Solution Sets to Perturbed Generalized Systems [J].
Fang, Zhi-miao ;
Li, Sheng-jie .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (02) :361-370
[9]  
Gopfert A., 2003, Variational methods in partially ordered spaces
[10]   Pointwise well-posedness in set optimization with cone proper sets [J].
Gutierrez, C. ;
Miglierina, E. ;
Molho, E. ;
Novo, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1822-1833