ON THE TOTAL ROMAN DOMINATION IN TREES

被引:18
作者
Amjadi, Jafar [1 ]
Sheikholeslami, Seyed Mahmoud [1 ]
Soroudi, Marzieh [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
total Roman dominating function; total Roman domination number; trees;
D O I
10.7151/dmgt.2099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A total Roman dominating function on a graph G is a function f : V(G) -> {0,1, 2} satisfying the following conditions: (i) every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value f (V (G)) = Sigma(u is an element of V(G))f(u). The total Roman domination number gamma(tR) (G) is the minimum weight of a total Roman dominating function of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501-517] recently showed that for any graph G without isolated vertices, 2 gamma(G) <= gamma(tR) (G) <= 3 gamma(G), where gamma(G) is the domination number of G, and they raised the problem of characterizing the graphs G achieving these upper and lower bounds. In this paper, we provide a constructive characterization of these trees.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 18 条
[1]   Mixed Roman Domination in Graphs [J].
Ahangar, H. Abdollahzadeh ;
Haynes, Teresa W. ;
Valenzuela-Tripodoro, J. C. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) :1443-1454
[2]  
Ahangar HA, 2017, UTILITAS MATHEMATICA, V103, P245
[3]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[4]   Nordhaus-Gaddum bounds for total Roman domination [J].
Amjadi, J. ;
Sheikholeslami, S. M. ;
Soroudi, M. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) :126-133
[5]  
Amjadi J, 2017, AUSTRALAS J COMB, V69, P271
[6]  
Amjadi J, 2017, DISCRET MATH ALGORIT, V9, DOI 10.1142/S1793830917500501
[7]  
Amjadi J., ARS COMBIN
[8]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[9]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[10]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28