A note on the proof for the optimal consecutive-k-out-of-n: G line for n≤2k

被引:15
作者
Cui, Lirong [1 ]
Hawkes, Alan G. [2 ]
机构
[1] Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China
[2] Univ Coll Swansea, Sch Business & Econ, Swansea SA2 8PP, W Glam, Wales
基金
中国国家自然科学基金;
关键词
consecutive systems; invariant optimal assignment; reliability;
D O I
10.1016/j.jspi.2007.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A proof on the optimal arrangement of a linear consecutive-k-out-of-n : G system, with n=2k, was given by Jalali et al. [2005. The optimal consecutive-k-out-of-n : G line for it n <= 2k. J. Statist. Plann. Inference 128, 281 - 287]. However, a corollary for the case n < 2k was still incomplete. In this note we point out what is missing from the proof of that corollary and present a new proof using a different approach. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1516 / 1520
页数:5
相关论文
共 10 条
[1]   OPTIMAL CONSECUTIVE-2-OUT-OF-N SYSTEMS [J].
DU, DZ ;
HWANG, FK .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (01) :187-191
[2]   Optimal consecutive-k-out-of-n:G cycle for n ≤ 2k+1 [J].
Du, DZ ;
Hwang, FK ;
Jia, XH ;
Ngo, HQ .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (03) :305-316
[3]   Optimal consecutive-k-out-of-(2k+1):: G cycle [J].
Du, DZ ;
Hwang, FK ;
Jung, Y ;
Ngo, HQ .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (01) :51-60
[4]   The optimal consecutive-k-out-of-n:G line for n≤2k [J].
Jalali, A ;
Hawkes, AG ;
Cui, LR ;
Hwang, FK .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) :281-287
[5]   A CONSECUTIVE-K-OUT-OF-N - G-SYSTEM - THE MIRROR-IMAGE OF A CONSECUTIVE-K-OUT-OF-N - F-SYSTEM [J].
KUO, W ;
ZHANG, WX ;
ZUO, MJ .
IEEE TRANSACTIONS ON RELIABILITY, 1990, 39 (02) :244-253
[6]   OPTIMAL CONSECUTIVE-2-OUT-OF-N-F COMPONENT SEQUENCING [J].
MALON, DM .
IEEE TRANSACTIONS ON RELIABILITY, 1984, 33 (05) :414-418
[7]   OPTIMAL CONSECUTIVE-K-OUT-OF-N-F COMPONENT SEQUENCING [J].
MALON, DM .
IEEE TRANSACTIONS ON RELIABILITY, 1985, 34 (01) :46-49
[8]   A REARRANGEMENT INEQUALITY FOR THE LONGEST RUN, WITH AN APPLICATION TO NETWORK RELIABILITY [J].
TONG, YL .
JOURNAL OF APPLIED PROBABILITY, 1985, 22 (02) :386-393
[9]  
ZUO MJ, 1990, NAV RES LOG, V37, P203, DOI 10.1002/1520-6750(199004)37:2<203::AID-NAV3220370203>3.0.CO
[10]  
2-X