Dynamics of a Delayed Epidemic Model with Beddington-Deangelis Incidence Rate and a Constant Infectious Period

被引:2
作者
Raji-allah, Abdelali [1 ]
Alaoui, Hamad Talibi [1 ]
机构
[1] Chouaib Doukkali Univ, Dept Math, Fac Sci, BP 20, El Jadida 24000, Morocco
关键词
SIR epidemic model; Infectious period; Characteristic equation; Comparison arguments; Permanence; Global stability; Beddington-DeAngelis incidence; GLOBAL STABILITY;
D O I
10.5890/JAND.2020.12.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R-0. Accurately, if R-0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using comparison arguments. In contrast, if R-0 > 1, we see that the disease-free equilibrium is unstable and the endemic equilibrium is permanent and locally asymptotically stable and we give sufficient conditions for the global asymptotic stability of the endemic equilibrium. (C) 2020 L&H Scientific Publishing, LLC. All rights reserved.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 17 条
[1]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[2]   Geometric stability switch criteria in delay differential systems with delay dependent parameters [J].
Beretta, E ;
Kuang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) :1144-1165
[3]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[4]   The SIRC model and influenza A [J].
Casagrandi, Renato ;
Bolzoni, Luca ;
Levin, Simon A. ;
Andreasen, Viggo .
MATHEMATICAL BIOSCIENCES, 2006, 200 (02) :152-169
[5]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[6]  
Dubey B, 2015, APPL APPL MATH, V10, P718
[7]   Analysis of a delayed SIR epidemic model with pulse vaccination [J].
Gao, Shujing ;
Teng, Zhidong ;
Xie, Dehui .
CHAOS SOLITONS & FRACTALS, 2009, 40 (02) :1004-1011
[8]  
Guo H., 2005, CANADIAN APPL MATH Q, V13
[9]  
Hale J.K, 1977, THEORY FUNCTIONAL DI
[10]  
Kaddar A, 2009, ELECTRON J DIFFER EQ