The stochastic parabolic partial differential equation with non-Lipschitz coefficients on the unbounded domain

被引:8
作者
Xie, Bin [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
space-time white noise; heat equation; non-Lipschitz; pathwise uniqueness; Bihari's lemma;
D O I
10.1016/j.jmaa.2007.07.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence and uniqueness of the stochastic heat equation driven by the space-time white noise under the weaker conditions of the coefficients than the Lipschitz conditions. In order to show the existence of the solution, we investigate the sequence of the successive approximations under two kinds of conditions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:705 / 718
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1998, MATH SCI ENG
[2]  
Barbu D., 1998, PORT MATH, V55, P411
[3]  
Bihari I., 1956, ACTA MATH ACAD SCI H, V7, P81, DOI DOI 10.1007/BF02022967
[4]  
Da Prato Giuseppe, 1992, ENCY MATH APPL, V44
[5]   Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces [J].
El Boukfaoui, Y ;
Erraoui, M .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2002, 20 (03) :495-518
[6]  
Manthey R., 1990, SERDICA, V16, P194
[7]   STOCHASTIC DIFFUSION ON AN UNBOUNDED DOMAIN [J].
MARCUS, R .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 84 (01) :143-153
[8]  
PARDOUX E, 1993, B SCI MATH, V117, P29
[9]   2 CONTRASTING PROPERTIES OF SOLUTIONS FOR ONE-DIMENSIONAL STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
SHIGA, T .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02) :415-437
[10]   SUCCESSIVE-APPROXIMATIONS TO SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
TANIGUCHI, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :152-169