The tanh and the sine-cosine methods for the complex modified K dV and the generalized KdV and the generalized K dV equations

被引:78
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Coll, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
complex modified K dV equation; modified K dV equation; compactons; kink solitons; periodic solutions; tanh method; sine-cosine method;
D O I
10.1016/j.camwa.2004.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complex modified KdV (CMK dV) equation and the generalized KdV equation are investigated by using the tanh method and the sine-cosine method. A variety of exact travelling wave solutions with compact and noncompact structures are formally obtained for each equation. The study reveals the power of the two schemes where each method complements the other. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1101 / 1112
页数:12
相关论文
共 34 条
[1]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[2]  
FORDY AP, 1990, SOLITON THEORY SURVE
[3]   Symbolic computation of conserved densities for systems of nonlinear evolution equations [J].
Goktas, U ;
Hereman, W .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (05) :591-621
[4]   NON-LINEAR VECTOR WAVES IN A MECHANICAL MODEL OF A MOLECULAR CHAIN [J].
GORBACHEVA, OB ;
OSTROVSKY, LA .
PHYSICA D, 1983, 8 (1-2) :223-228
[5]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[6]  
Kadomtsev B.B., 1974, SOV PHYS JETP, V39, P285
[7]   NON-LINEAR EVOLUTION OF LOWER HYBRID WAVES [J].
KARNEY, CFF ;
SEN, A ;
CHU, FYF .
PHYSICS OF FLUIDS, 1979, 22 (05) :940-952
[8]   Self-focusing and transverse instabilities of solitary waves [J].
Kivshar, YS ;
Pelinovsky, DE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (04) :118-195
[9]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91
[10]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654