Monitoring the Growth Status of Corn Crop from UAV Images Based on Dense Convolutional Neural Network

被引:3
作者
Li, Yu [1 ]
Zhu, Jia [2 ]
Xing, Yuling [1 ]
Dai, Zhangyan [3 ,4 ]
Huang, Jin [1 ]
Hassan, Saeed-Ul [5 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Jinhua, Zhejiang, Peoples R China
[3] Guangdong Acad Agr Sci, Agrobiol Gene Res Ctr, Guangzhou, Peoples R China
[4] Guangdong Key Lab Crop Germplasm Resources Preser, Guangzhou, Peoples R China
[5] Metropolitan Univ, Manchester Metropolitan Univ, Comp & Math, Manchester, Lancs, England
基金
中国国家自然科学基金;
关键词
Image classification; UAV; deep learning; cornfield identification;
D O I
10.1142/S0218001422570075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring corn crop growth status is of great significance to crop production, breeding, and seed production. The Unmanned Aerial Vehicles' (UAVs) technology makes it possible to use computer vision technology to identify corn growth stage intelligently. A model customized for corn growth status monitoring based on a dense convolutional neural network (CM-CNN) was proposed, including a two-way dense module and a new activation function ELU. The two-way dense module enlarges the receptive field, while the ELU alleviates gradient disappearance and speeds up learning in deep neural networks. Dense architecture concatenates all the previous layer features to enhance feature reuse. The proposed CM-CNN performs well in classifying corn growth stages. Experimental results show that CM-CNN is a state-of-the-art method, with an accuracy of its relevant data up to 99.3%. Compared with other CNN models, viz. AlexNet, ZFNet, VGG, InceptionV3, Xception and ResNet, fewer parameters are in CM-CNN.
引用
收藏
页数:17
相关论文
共 35 条
[1]   Maize Tassel Detection From UAV Imagery Using Deep Learning [J].
Alzadjali, Aziza ;
Alali, Mohammed H. ;
Veeranampalayam Sivakumar, Arun Narenthiran ;
Deogun, Jitender S. ;
Scott, Stephen ;
Schnable, James C. ;
Shi, Yeyin .
FRONTIERS IN ROBOTICS AND AI, 2021, 8
[2]  
Ap, 2021, COMPUT ELECTRON AGR, V192
[3]   Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase [J].
Butler, Ethan E. ;
Huybers, Peter .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (03)
[4]   Ecophysiological yield components of maize hybrids with contrasting maturity [J].
Capristo, Pedro R. ;
Rizzalli, Roberto H. ;
Andrade, Fernando H. .
AGRONOMY JOURNAL, 2007, 99 (04) :1111-1118
[5]   Yield response to climate, management, and genotype: a large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems [J].
Carter, Elizabeth K. ;
Riha, Susan J. ;
Melkonian, Jeff ;
Steinschneider, Scott .
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (11)
[6]  
Clevert D.-A., 2016, C TRACK P, P1
[7]   Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle [J].
Du Mengmeng ;
Noboru, Noguchi ;
Atsushi, Itoh ;
Yukinori, Shibuya .
INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2017, 10 (05) :1-13
[8]  
FAO F., 2017, The Future of Food and Agriculture Trends and Challenges, V296, P1, DOI DOI 10.2307/4356839
[9]   Cereal Crop Ear Counting in Field Conditions Using Zenithal RGB Images [J].
Fernandez-Gallego, Jose A. ;
Luisa Buchaillot, Maria ;
Gracia-Romero, Adrian ;
Vatter, Thomas ;
Vergara Diaz, Omar ;
Aparicio Gutierrez, Nieves ;
Teresa Nieto-Taladriz, Maria ;
Samir Kerfal ;
Dolors Serret, Maria ;
Luis Araus, Jose ;
Kefauver, Shawn C. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (144)
[10]   Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images [J].
Guo, Yahui ;
Fu, Yongshuo H. ;
Chen, Shouzhi ;
Bryant, Christopher Robin ;
Li, Xinxi ;
Senthilnath, J. ;
Sun, Hongyong ;
Wang, Shuxin ;
Wu, Zhaofei ;
de Beurs, Kirsten .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102