Catalyzed LiBH4 and MgH2 mixture for hydrogen storage

被引:51
|
作者
Sridechprasat, Pattaraporn [1 ]
Suttisawat, Yindee [1 ]
Rangsunvigit, Pramoch [1 ]
Kitiyanan, Boonyarach [2 ]
Kulprathipanja, Santi [3 ]
机构
[1] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Ctr Petr Petrochem & Adv Mat, Bangkok 10330, Thailand
[3] UOP, Des Plaines, IL 60017 USA
关键词
LiBH4; MgH2; Catalyst; Hydrogen storage; DESTABILIZATION; PERFORMANCES; COMPOSITES; MAGNESIUM;
D O I
10.1016/j.ijhydene.2010.07.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen desorption/absorption of the 2:1 mole ratio of LiBH4 and MgH2 with and without a catalyst was investigated. In the case of the uncatalyzed LiBH4/MgH2 mixture, the first hydrogen desorption started at 50 degrees C. The amount of released hydrogen was 8.6 wt% at the first hydrogen desorption and dramatically reduced to 1.8 wt% at the tenth hydrogen desorption. The decrease in the hydrogen capacity in the subsequent hydrogen desorption may be due to the irreversibility of LiBH4. To investigate effects of a catalyst on the hydrogen desorption, 3 mol% of TiCl3, HfCl4, ZrCl4, or VCl3 was added to the LiBH4/MgH2 mixture. The lowest hydrogen desorption temperature, 260 degrees C, was from the sample with TiCl3. An amount of the catalyst also influenced the kinetics of the hydride mixture and 5 mol% seems to be an optimum amount of TiCl3 that resulted in the lowest hydrogen desorption temperature, 240 degrees C. In addition, the higher the amount of a catalyst, the lower the amount of the released hydrogen. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1200 / 1205
页数:6
相关论文
共 50 条
  • [31] Hydrogen desorption and absorption properties of Pd and MgO or nano-sized Ni-added MgH2 + LiBH4 composites
    Hong, Seong-Hyeon
    Song, Myoung Youp
    MATERIALS RESEARCH BULLETIN, 2013, 48 (09) : 3453 - 3458
  • [32] Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage
    Shao, Huaxu
    Huang, Yike
    Guo, Huinan
    Liu, Yafei
    Guo, Yusang
    Wang, Yijing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (76) : 37977 - 37985
  • [33] Microstructure and Hydrogen Storage Performance of Ball-Milled MgH2 Catalyzed by FeTi
    Revesz, Adam
    Paramonov, Roman
    Spassov, Tony
    Gajdics, Marcell
    ENERGIES, 2023, 16 (03)
  • [34] Improved hydrogen storage properties of MgH2 catalyzed with K2NiF6
    Sulaiman, N. N.
    Juahir, N.
    Mustafa, S.
    Yap, F. A. Halim
    Ismail, M.
    JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (05) : 832 - 839
  • [35] Improved hydrogen storage properties of MgH2 catalyzed with K2NiF6
    N.N.Sulaiman
    N.Juahir
    N.S.Mustafa
    F.A.Halim Yap
    M.Ismail
    Journal of Energy Chemistry, 2016, 25 (05) : 832 - 839
  • [36] Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling
    Imamura, Hayao
    Tanaka, Kenichi
    Kitazawa, Ichirou
    Sumi, Takeshi
    Sakata, Yoshihisa
    Nakayama, Noriaki
    Ooshima, Shinji
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 484 (1-2) : 939 - 942
  • [37] Characteristics of hydrogen storage by Sn/MgH2 nanocomposite obtained by mechanical milling of MgH2 with Sn
    Imamura, Hayao
    Yoshihara, Kazuki
    Yoo, Mika
    Kitazawa, Ichiro
    Sakata, Yoshihisa
    Oshima, Shinji
    Kataoka, Takeshi
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 1637 - +
  • [38] Grain Size Effect of MgH2 on Dehydrogenation Kinetics of 2LiBH4 +MgH2 System
    Kou Hua-Qin
    Sang Ge
    Chen Li-Xin
    Xiao Xue-Zhang
    Deng Shuai-Shuai
    Huang Zhi-Yong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2013, 34 (10): : 2347 - 2352
  • [39] Application and development of LiBH4 hydrogen storage materials
    Yang, Xinglin
    Su, Jianye
    Lu, Xiaohui
    Kong, Jie
    Huo, Da
    Pan, Yijiang
    Li, Wenxuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1001
  • [40] Preparation of MgH2 composite with a composition of 40%MgH2+30%LiBH4+30%(2LiBH4 + MgF2)
    Hong, Seong-Hyeon
    Song, Myoung Youp
    MATERIALS RESEARCH BULLETIN, 2012, 47 (09) : 2525 - 2529