Catalyzed LiBH4 and MgH2 mixture for hydrogen storage

被引:51
|
作者
Sridechprasat, Pattaraporn [1 ]
Suttisawat, Yindee [1 ]
Rangsunvigit, Pramoch [1 ]
Kitiyanan, Boonyarach [2 ]
Kulprathipanja, Santi [3 ]
机构
[1] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Ctr Petr Petrochem & Adv Mat, Bangkok 10330, Thailand
[3] UOP, Des Plaines, IL 60017 USA
关键词
LiBH4; MgH2; Catalyst; Hydrogen storage; DESTABILIZATION; PERFORMANCES; COMPOSITES; MAGNESIUM;
D O I
10.1016/j.ijhydene.2010.07.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen desorption/absorption of the 2:1 mole ratio of LiBH4 and MgH2 with and without a catalyst was investigated. In the case of the uncatalyzed LiBH4/MgH2 mixture, the first hydrogen desorption started at 50 degrees C. The amount of released hydrogen was 8.6 wt% at the first hydrogen desorption and dramatically reduced to 1.8 wt% at the tenth hydrogen desorption. The decrease in the hydrogen capacity in the subsequent hydrogen desorption may be due to the irreversibility of LiBH4. To investigate effects of a catalyst on the hydrogen desorption, 3 mol% of TiCl3, HfCl4, ZrCl4, or VCl3 was added to the LiBH4/MgH2 mixture. The lowest hydrogen desorption temperature, 260 degrees C, was from the sample with TiCl3. An amount of the catalyst also influenced the kinetics of the hydride mixture and 5 mol% seems to be an optimum amount of TiCl3 that resulted in the lowest hydrogen desorption temperature, 240 degrees C. In addition, the higher the amount of a catalyst, the lower the amount of the released hydrogen. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1200 / 1205
页数:6
相关论文
共 50 条
  • [31] Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System
    Wan, Xuefei
    Markmaitree, Tippawan
    Osborn, William
    Shaw, Leon L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (46): : 18232 - 18243
  • [32] Superior hydrogen storage properties of LiBH4 catalyzed by Mg(AlH4)2
    Liu, Dongming
    Liu, Qingqing
    Si, Tingzhi
    Zhang, Qingan
    Fang, Fang
    Sun, Dalin
    Ouyang, Liuzhang
    Zhu, Min
    CHEMICAL COMMUNICATIONS, 2011, 47 (20) : 5741 - 5743
  • [33] Enhancement of Hydrogen Desorption from Nanocomposite Prepared by Ball Milling MgH2 with In Situ Aerosol Spraying LiBH4
    Ding, Zhao
    Shaw, Leon
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17): : 15064 - 15072
  • [34] Reaction between LiBH4 and MgH2 induced by high-energy ball milling
    Ding, Zhao
    Zhao, Xuzhe
    Shaw, Leon L.
    JOURNAL OF POWER SOURCES, 2015, 293 : 236 - 245
  • [35] Hydrogen storage behavior of 2LiBH4/MgH2 composites improved by the catalysis of CoNiB nanoparticles
    Zhao, Yanping
    Ding, Liangzhong
    Zhong, Tongsheng
    Yuan, Huatang
    Jiao, Lifang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (21) : 11055 - 11060
  • [36] Fundamental environmental reactivity testing and analysis of the hydrogen storage material 2LiBH4•MgH2
    James, Charles W., Jr.
    Brinkman, Kyle S.
    Gray, Joshua R.
    Cortes-Concepcion, Jose A.
    Anton, Donald L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (03) : 1371 - 1381
  • [37] Kinetics and modeling studies of the CaH2/LiBH4, MgH2/LiBH4, Ca(BH4)2 and Mg(BH4)2 systems
    Ibikunle, A. A.
    Sabitu, S. T.
    Goudy, A. J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 556 : 45 - 50
  • [38] Kinetics Enhancement, Reaction Pathway Change, and Mechanism Clarification in LiBH4 with Ti-Catalyzed Nanocrystalline MgH2 Composite
    Shao, Huaiyu
    Felderhoff, Michael
    Weidenthaler, Claudia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (05): : 2341 - 2348
  • [39] Nanostructured Ti-catalyzed MgH2 for hydrogen storage
    Shao, H.
    Felderhoff, M.
    Schueth, F.
    Weidenthaler, C.
    NANOTECHNOLOGY, 2011, 22 (23)
  • [40] Reversible storage of hydrogen in destabilized LiBH4
    Vajo, JJ
    Skeith, SL
    Mertens, F
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (09): : 3719 - 3722