The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells

被引:82
作者
Payen, L [1 ]
Delugin, L [1 ]
Courtois, A [1 ]
Trinquart, Y [1 ]
Guillouzo, A [1 ]
Fardel, O [1 ]
机构
[1] Fac Pharm, INSERM U456, F-35043 Rennes, France
关键词
multidrug resistance protein; glibenclamide; ATP binding cassette transporters; sulphonylurea; anticancer drug resistance; hepatocytes;
D O I
10.1038/sj.bjp.0703863
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 Glibenclamide, a sulphonylurea widely used for the treatment of non-insulin-dependent diabetes mellitus, has been shown to inhibit the activities of various ATP-binding cassette (ABC) transporters. In the present study, its effects towards multidrug resistance protein 1 (MRP1), an ABC efflux pump conferring multidrug resistance and handling organic anions, were investigated. 2 Intracellular accumulation of calcein: an anionic dye substrate for MRP1, was strongly increased by glibenclamide in a dose-dependent manner in MRP1-overexpressing lung tumour GLC4/Sb30 cells through inhibition of MRP1-related calcein efflux. By contrast, glibenclamide did not alter calcein levels in parental control GLC4 cells. Another sulphonylurea, tolbutamide, was however without effect on calcein accumulation in both GLC4/Sb30 and GLC4 cells. 3 Glibendamide used at 12.5 muM was, moreover, found to strongly enhance the sensitivity of GLC4/Sb30 cells towards vincristine, an anticancer drug handled by MRP1. 4 Efflux of carboxy-2',7'-dichloroffuorescein, an anionic dye handled by the ABC transporter MRP2 sharing numerous substrates with MRP1 and expressed at high levels in liver, was also strongly inhibited by glibenclamide in isolated rat hepatocytes. 5 In summary, glibenclamide reversed MRP1-mediated drug resistance likely through inhibiting MRP1 activity and blocked organic anion efflux from MRP2-expressing hepatocytes. Such effects associated with the known inhibitory properties of glibenclamide towards various others ABC proteins suggest that this sulphonylurea is a general inhibitor of ABC transporters.
引用
收藏
页码:778 / 784
页数:7
相关论文
共 45 条
[1]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[2]   Identification of the high-affinity tolbutamide site on the SUR1 subunit of the KATP channel [J].
Ashfield, R ;
Gribble, FM ;
Ashcroft, SJH ;
Ashcroft, FM .
DIABETES, 1999, 48 (06) :1341-1347
[3]   A view of SUR/KIR6.X, KATP channels [J].
Babenko, AP ;
Aguilar-Bryan, L ;
Bryan, J .
ANNUAL REVIEW OF PHYSIOLOGY, 1998, 60 :667-687
[4]   Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions [J].
Bakos, É ;
Evers, R ;
Sinkó, E ;
Váradi, A ;
Borst, P ;
Sarkadi, B .
MOLECULAR PHARMACOLOGY, 2000, 57 (04) :760-768
[5]   ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes [J].
Becq, F ;
Hamon, Y ;
Bajetto, A ;
Gola, M ;
Verrier, B ;
Chimini, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2695-2699
[6]   The multidrug resistance protein family [J].
Borst, P ;
Evers, R ;
Kool, M ;
Wijnholds, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1461 (02) :347-357
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance [J].
Bradshaw, DM ;
Arceci, RJ .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (11) :3674-3690
[9]  
CARMICHAEL J, 1987, CANCER RES, V47, P936
[10]   Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter [J].
Chen, ZS ;
Kawabe, T ;
Ono, M ;
Aoki, S ;
Sumizawa, T ;
Furukawa, T ;
Uchiumi, T ;
Wada, M ;
Kuwano, M ;
Akiyama, S .
MOLECULAR PHARMACOLOGY, 1999, 56 (06) :1219-1228