Rho resonance parameters from lattice QCD

被引:64
作者
Guo, Dehua [1 ]
Alexandru, Andrei [1 ]
Molina, Raquel [1 ]
Doring, Michael [1 ,2 ]
机构
[1] George Washington Univ, Dept Phys, Washington, DC 20052 USA
[2] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
基金
美国国家科学基金会;
关键词
CHIRAL PERTURBATION-THEORY; QUANTUM-FIELD THEORIES; ELASTIC-SCATTERING; VOLUME DEPENDENCE; ENERGY-SPECTRUM; FINITE-VOLUME; PI-PI; STATES; MASS;
D O I
10.1103/PhysRevD.94.034501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform a high-precision calculation of the phase shifts for p-p scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark flavors (N-f = 2). We extract the rho resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to m(pi) = 226 MeV and m(pi) = 315 MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase shifts around the resonance for both quark masses. We find that the extrapolated value, m(rho) = 720(1)(15) MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
引用
收藏
页数:20
相关论文
共 62 条
[1]   Multi-mass solvers for lattice QCD on GPUs [J].
Alexandru, A. ;
Pelissier, C. ;
Gamari, B. ;
Lee, F. X. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1866-1878
[2]   LATTICE QCD ON SMALL COMPUTERS [J].
ALFORD, M ;
DIMM, W ;
LEPAGE, GP ;
HOCKNEY, G ;
MACKENZIE, PB .
PHYSICS LETTERS B, 1995, 361 (1-4) :87-94
[3]   ρ meson decay in 2+1 flavor lattice QCD [J].
Aoki, S. ;
Ishikawa, K-I. ;
Ishizuka, N. ;
Kanaya, K. ;
Kuramashi, Y. ;
Namekawa, Y. ;
Okawa, M. ;
Taniguchi, Y. ;
Ukawa, A. ;
Ukita, N. ;
Yamazaki, T. ;
Yoshie, T. .
PHYSICAL REVIEW D, 2011, 84 (09)
[4]   Continuum limit physics from 2+1 flavor domain wall QCD [J].
Aoki, Y. ;
Arthur, R. ;
Blum, T. ;
Boyle, P. A. ;
Broemmel, D. ;
Christ, N. H. ;
Dawson, C. ;
Flynn, J. M. ;
Izubuchi, T. ;
Jin, X-Y. ;
Jung, C. ;
Kelly, C. ;
Li, M. ;
Lichtl, A. ;
Lightman, M. ;
Lin, M. F. ;
Mawhinney, R. D. ;
Maynard, C. M. ;
Ohta, S. ;
Pendleton, B. J. ;
Sachrajda, C. T. ;
Scholz, E. E. ;
Soni, A. ;
Wennekers, J. ;
Zanotti, J. M. ;
Zhou, R. .
PHYSICAL REVIEW D, 2011, 83 (07)
[5]   ρ and K* resonances on the lattice at nearly physical quark masses and Nf=2 [J].
Bali, Gunnar S. ;
Collins, Sara ;
Cox, Antonio ;
Donald, Gordon ;
Goeckeler, Meinulf ;
Lang, C. B. ;
Schaefer, Andreas .
PHYSICAL REVIEW D, 2016, 93 (05)
[6]   On the generalized eigenvalue method for energies and matrix elements in lattice field theory [J].
Blossier, Benoit ;
Della Morte, Michele ;
von Hippel, Georg ;
Mendes, Tereza ;
Sommer, Rainer .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04)
[7]   High-precision scale setting in lattice QCD [J].
Borsanyi, Szabolcs ;
Duerr, Stephan ;
Fodor, Zoltan ;
Hoelbling, Christian ;
Katz, Sandor D. ;
Krieg, Stefan ;
Kurth, Thorsten ;
Lellouch, Laurent ;
Lippert, Thomas ;
McNeile, Craig ;
Szabo, Kalman K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09)
[8]  
Bruno M., 2014, POS LATTICE, V2013, P321
[9]   Infrared regularization for spin-1 fields [J].
Bruns, PC ;
Meissner, UG .
EUROPEAN PHYSICAL JOURNAL C, 2005, 40 (01) :97-119
[10]  
Bulava J., ARXIV160405593