The Shannon-McMillan Theorem Proves Convergence to Equiprobability of Boltzmann's Microstates

被引:0
作者
Spalvieri, Arnaldo [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
Boltzmann-Planck entropy formula; Shannon-McMillan theorem; equiprobability of microstates;
D O I
10.3390/e23070899
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann-Planck entropy formula S = k log(W) is proved by the Shannon-McMillan theorem, a cornerstone of information theory. This result further strengthens the link between information theory and statistical mechanics.
引用
收藏
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1987, COURSE THEORETICAL P, DOI DOI 10.1016/C2013-0-03799-1
[2]   THE INDIVIDUAL ERGODIC THEOREM OF INFORMATION-THEORY [J].
BREIMAN, L .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03) :809-811
[3]  
Cover T. M., 2006, ELEMENTS INFORM THEO, V2nd
[4]  
Fitzpatrick Richard, 2020, Thermodynamics and Statistical Mechanics
[5]  
Frigg Roman., 2011, Probabilities in physics, P115
[6]   On the (Boltzmann) entropy of non-equilibrium systems [J].
Goldstein, S ;
Lebowitz, JL .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) :53-66
[7]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[8]  
Kardar M., 2007, Statistical physics of particles
[9]   IRREVERSIBILITY AND HEAT GENERATION IN THE COMPUTING PROCESS [J].
LANDAUER, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1961, 5 (03) :183-191
[10]   Photons, Bits and Entropy: From Planck to Shannon at the Roots of the Information Age [J].
Martinelli, Mario .
ENTROPY, 2017, 19 (07)