A brittle fracture mechanism in thermally aged duplex stainless steels revealed by in situ high-energy X-ray diffraction

被引:13
|
作者
Li, Shilei [1 ,2 ]
Wang, Tiancheng [1 ]
Tan, Qing [1 ]
Li, Runguang [1 ]
Wang, Yanli [1 ]
Wang, Xitao [3 ]
Ren, Yang [4 ]
Wang, Yandong [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
[4] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2019年 / 739卷
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
High-energy X-ray diffraction; Duplex stainless steels; Thermal aging; Spinodal decomposition; G-PHASE PRECIPITATION; LOW-CYCLE FATIGUE; MICROMECHANICAL BEHAVIOR; TRANSFORMATION; EMBRITTLEMENT; TEMPERATURE; FERRITE; PROBE;
D O I
10.1016/j.msea.2018.10.025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A direct relationship between the microstructural evolution and macroscopic fracture behaviors of a thermally aged (at 475 degrees C for 400 h) duplex stainless steel (DSS) has been established with experimental results from atom probe tomography (APT), nanoindentation and in situ synchrotron-based high-energy X-ray diffraction (HE-XRD). The APT experiments demonstrate that ferrite in DSS spinodally decomposes into Cr-enriched and Cr-depleted domains during thermal aging, which leads to a severe hardening effect in ferrite. The lattice strain development during deformation acquired with the in situ HE-XRD measurements confirms the cleavage fracture of alpha{110} and alpha{200} ferrite grains aligned perpendicular to loading direction. The thermally aged DSS can be readily fractured by connecting the cleavage cracks in ferrite. The spinodal-decomposition-induced hardening in ferrite and the premature failure of ferrite control the final brittle fracture in the aged DSS.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 50 条
  • [41] An in situ high-energy X-ray diffraction study of micromechanical behavior of Zr-based metallic glass reinforced porous W matrix composite
    Ma, L. L.
    Wang, L.
    Xue, Y. F.
    Wang, Y. D.
    Li, N.
    Ren, Y.
    Zhang, H. F.
    Wang, A. M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 530 : 344 - 348
  • [42] X-ray diffraction characterisation of expanded austenite and ferrite in plasma nitrided stainless steels
    Gontijo, L. C.
    Machado, R.
    Casteletti, L. C.
    Kuri, S. E.
    Nascente, P. A. P.
    SURFACE ENGINEERING, 2010, 26 (04) : 265 - 270
  • [43] The influence of post-aging treatment on the microstructure and micromechanical behaviors of additively manufactured maraging steel investigated by in situ high-energy X-ray diffraction
    Li, Yang
    Yu, Jingyue
    Li, Shilei
    Wang, Shengjie
    Ren, Yang
    Yang, Ke
    Wang, Yan-Dong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 200 : 1 - 12
  • [44] High temperature micro-deformation behavior of continuous TiNb fiber reinforced TiAl matrix composite investigated by in-situ high-energy X-ray diffraction
    Li, Jinguang
    Hu, Rui
    Zhou, Mi
    Gao, Zitong
    Wu, Yulun
    Luo, Xian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 846
  • [45] Quantifying Dynamic Signal Spread in Real-Time High-Energy X-ray Diffraction
    Banco, Daniel P.
    Miller, Eric
    Beaudoin, Armand
    Miller, Matthew P.
    Chatterjee, Kamalika
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (04) : 568 - 586
  • [46] A study of stress relaxation in AZ31 using high-energy X-ray diffraction
    Tang, W.
    Halm, K. L.
    Trinkle, D. R.
    Koker, M. K. A.
    Lienert, U.
    Kenesei, P.
    Beaudoin, A. J.
    ACTA MATERIALIA, 2015, 101 : 71 - 79
  • [47] Structural analysis of hydrous sodium carboxylate melt by high-energy x-ray diffraction measurement
    Kajinami, A
    Nishikawa, H
    Kotake, T
    Deki, S
    Sakai, I
    Kohara, S
    Umesaki, N
    PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON MOLTEN SALT CHEMISTRY AND TECHNOLOGY, 2001, : 160 - 163
  • [48] Temperature-dependent constitutive modeling of a magnesium alloy ZEK100 sheet using crystal plasticity models combined with in situ high-energy X-ray diffraction experiment
    Bong, Hyuk Jong
    Hu, Xiaohua
    Sun, Xin
    Ren, Yang
    JOURNAL OF MAGNESIUM AND ALLOYS, 2022, 10 (10) : 2801 - 2816
  • [49] Determination of directionally dependent structural and microstructural information using high-energy X-ray diffraction
    Daniels, J. E.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 : 1109 - 1114
  • [50] Structural study of semiconductive CdTe-ZnTe alloy by high-energy X-ray diffraction
    Yoneda, Y
    Matsumoto, N
    Suzuya, K
    Kohara, S
    Mizuki, J
    FERROELECTRICS, 2002, 268 : 277 - 282