Simultaneously achieving ultrahigh energy storage density and energy efficiency in barium titanate based ceramics

被引:108
|
作者
Chen, Xiuli [1 ]
Li, Xu [1 ]
Sun, Jie [1 ]
Sun, Congcong [1 ]
Shi, Junpeng [1 ]
Pang, Feihong [1 ]
Zhou, Huanfu [1 ]
机构
[1] Guilin Univ Technol, Collaborat Innovat Ctr Explorat Hidden Nonferrous, Sch Mat Sci & Engn, Key Lab Nonferrous Mat & New Proc Technol,Minist, Guilin 541004, Peoples R China
关键词
BaTiO3-based; Dielectric properties; Energy storage; LEAD-FREE CERAMICS; RELAXOR FERROELECTRIC CERAMICS; LOW DIELECTRIC LOSS; THERMAL-STABILITY; PHASE EVOLUTION; EXCELLENT STABILITY; MICROSTRUCTURE; CAPACITORS; TEMPERATURE; PERMITTIVITY;
D O I
10.1016/j.ceramint.2019.09.265
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
BaTiO3-BiMeO3 (Me represent trivalent or average trivalent metallic ions) lead-free relaxor ferroelectrics have been demonstrated to be excellent candidates for dielectrics in pulsed power capacitor applications. However, the recoverable energy density (U-rec) needs to be further improved to fulfil the demands of miniaturization and integration in electronic devices. In this work, an ultrahigh U-rec of 3.282 J/cm(3) was obtained in (1-x)BaTiO3-xBi (Mg2/3Ta1/3)O-3 (xBMT) (x = 0.12) lead-free ceramics. The significantly enhanced U-rec was first reported in BT-based bulk ceramics. Meanwhile, all components exhibit ultrahigh energy storage efficiency (eta) of 93% under a strong electric field (>= 300 kV/cm), which may be attributed to the low leakage current caused by the introduction of Ta ions. In addition, excellent temperature, frequency and fatigue stabilities (variation of U-rec < 9% over 25-140 degrees C, U-rec > 2 J/cm(3) in 1-100 Hz and U-rec < 2% after 10(4) cycles) can be observed. These results demonstrate that 0.12BMT relaxor ferroelectrics can be considered a promising lead-free material for application in pulsed power systems.
引用
收藏
页码:2764 / 2771
页数:8
相关论文
共 50 条
  • [21] Achieving ultrahigh energy storage efficiency in local-composition gradient-structured ferroelectric ceramics
    Huan, Yu
    Wei, Tao
    Wang, Xiaozhi
    Liu, Xiaoming
    Zhao, Peiyao
    Wang, Xiaohui
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [22] Ultrahigh Energy-Storage Density of BaTiO3-Based Ceramics via the Interfacial Polarization Strategy
    Wang, Changyuan
    Cao, Wenjun
    Liang, Cen
    Zhao, Hanyu
    Cheng, Chao
    Huang, Shouguo
    Yu, Yi
    Wang, Chunchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (36) : 42774 - 42783
  • [23] Achieving high energy storage density and efficiency simultaneously in Sr(Nb0.5Al0.5)O3 modified BiFeO3 based lead-free ceramics
    Liu, Shuo
    Feng, Wuwei
    Li, Jinhong
    Zhao, Changchun
    Hu, Cheng
    He, Bin
    Bao, Zhidi
    Luan, Xuezhu
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [24] Simultaneous achievement of high energy storage density and ultrahigh efficiency in BCZT-based relaxor ceramics at moderate electric field
    Dang, Santan
    Sun, Yaqiong
    Peng, Zhanhui
    Yang, Tianyi
    Wang, Yuanhao
    Chai, Qizhen
    Wu, Di
    Liang, Pengfei
    Wei, Lingling
    Chao, Xiaolian
    Yang, Zupei
    JOURNAL OF POWER SOURCES, 2025, 627
  • [25] Significantly enhanced energy storage density in lead-free barium strontium titanate-based ceramics through a cooperative optimization strategy
    Ren, Jia-Jia
    Xu, Di-Ming
    Li, Da
    Zhao, Wei-Chen
    Xu, Meng-Kang
    Shi, Zhong-Qi
    Zhou, Tao
    Lin, Hui-Xing
    Zhou, Di
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (47) : 16739 - 16747
  • [26] ACHIEVING SUPERIOR ENERGY STORAGE PERFORMANCE IN BARIUM TITANATE CERAMICS VIA A RARE EARTH CO-DOPING STRATEGY
    Alkathy, Mahmoud. S.
    Kassim, H. A.
    Gatasheh, Mansour K.
    Goud, J. Pundareekam
    Eiras, Jose A.
    CERAMICS-SILIKATY, 2024, 68 (04) : 505 - 515
  • [27] Ultrahigh energy storage density and efficiency in PLZST antiferroelectric ceramics via multiple optimization strategy
    Wang, Xiaozhi
    Zhu, Qingshan
    Sun, Hongchen
    Wang, Mengjiao
    Xu, Ran
    Feng, Yujun
    Li, Zhenrong
    Wei, Xiaoyong
    Xu, Zhuo
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (09) : 4051 - 4059
  • [28] Achieving Ultrahigh Energy Storage Density in Lead-Free Sodium Niobate-Based Ceramics by Modulating the Antiferroelectric Phase
    Ma, Jiajun
    Zhang, Ji
    Guo, Jian
    Li, Xiongjie
    Guo, Shun
    Huan, Yu
    Wang, Jing
    Zhang, Shan-Tao
    Wang, Yaojin
    CHEMISTRY OF MATERIALS, 2022, 34 (16) : 7313 - 7322
  • [29] Composition-driven (barium titanate based ceramics) pseudo-binary system for energy storage applications through ferroelectric studies
    Balmuchu, Shashi Priya
    Pathak, Riya
    Dobbidi, Pamu
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (11):
  • [30] Bismuth sodium titanate-barium titanate-barium zirconate titanate relaxor ferroelectric ceramics with high recoverable energy storage density
    Chen, Yanqin
    Fan, Huiqing
    Hou, Dingwei
    Jia, Yuxin
    Zhang, Ao
    Wang, Weijia
    CERAMICS INTERNATIONAL, 2022, 48 (18) : 26894 - 26903